Клад острова Морица
Шрифт:
Фундаментом этой работы послужила заманчивая идея, высказанная задолго до того математиками-теоретиками. Весьма грубо, приблизительно ее можно изложить так: если построить систему, состоящую из большого количества одинаковых элементов, совершенно одинаково связанных друг с другом, то такая система, иначе говоря, простейшая ткань, будет способна считать и запоминать поступающие извне сигналы, а также будет надежна в работе.
Эта мысль заинтересовала многих ученых. Как известно, ламповые электронно-вычислительные устройства чрезвычайно сложны. Кроме того, они весьма «нежны»: стоит выйти из строя нескольким лампам, и машина начнет «нести чепуху». А предложенная математиками простейшая система подобна живому мозгу: отмирание нескольких ее «клеток» не сказывается на результатах деятельности
Но как осуществить такие исследования? Конечно, схему-ткань можно было бы сконструировать. Но это очень дорого и долго: каждую схему пришлось бы собирать из десятков, если не сотен тысяч элементов. И при этом неизвестно, какой будет результат, окупятся ли затраты.
Сотрудники лаборатории кибернетики пошли по другому пути. Вот пачка картонных карточек, испещренных отверстиями. Это запись на языке ЭВМ всех сведений о том, какой должна быть интересующая нас ткань. Перфокарты вводятся в электронно-вычислительную машину, и она запоминает все данные. В «электронном воображении» машины возникает четкое представление о нужной нам ткани. Теперь над этой воображаемой тканью можно производить любые эксперименты. В машину вводятся карточки с записью условий опыта. Неважно, что ткани нет на самом деле, что ничем реальным ее не прокалывают, не рвут, не режут, что она существует лишь в «воображении», в «мечтах» электронного мозга. Эти «мечты» столь точны, что нет принципиальной разницы между опытами наяву и в математической абстракции. О результатах эксперимента машина рассказывает языком цифр, напечатанных на ленте.
Исследования во многом подтвердили теоретические положения. Система (ткань) действительно могла запоминать, считать и быстро восстанавливала свою работоспособность, если какие-то «точки», элементы, под внешним воздействием «умирали» — выходили из строя. Но этого мало. После одного эксперимента математики заметили, что в определенных условиях ткань вдруг «оживала» и начинала пульсировать так, как пульсирует сердце лягушки.
Новые эксперименты, новые расчеты… И вот уже в руках ученых пачка перфокарт — создана математическая модель сердечной мышцы. Теперь в любой момент в электронном мозгу машины можно вызвать «представление» о сердце и ставить на этом воображаемом «сердце» опыты, соответствующие медицинским. И вот что особенно интересно: эти опыты дали результаты, аналогичные тем, какие получают физиологи при обычных экспериментах на настоящем сердце.
Работами математиков заинтересовались физиологи. Почему? Во-первых, потому, что на воображаемой сердечной или мозговой ткани можно ставить такие опыты, которые не поставишь на реальных органах. Во-вторых, потому, что параллельные эксперименты на живом органе и на созданном в теории помогут внести ясность в спорные вопросы физиологии, помогут лучше понять, как возникают и развиваются некоторые тяжелые заболевания сердца и мозга.
Прошло не так много времени с того дня, когда в Ленинградском вычислительном центре я пытался уразуметь, как это можно создавать нечто (а тем более живую ткань) из ничего, да еще производить над этой абстракцией какие-то — абстрактные же! — опыты. И вот я в Институте катализа Сибирского отделения Академии наук СССР. Царство тонких и сложных превращений вещества. Здесь властвует химия.
— Не только химия, — говорят мне хозяева. — У нас не меньшими правами располагает и математика. Впрочем, давайте зайдем сюда.
Подходим к приоткрытой двери, из-за которой слышны команды:
— Уменьшить концентрацию спирта! Хорошо… Сейчас подогрейте газ. Еще немного… Готово! А теперь, Володя, будем резко менять режим. Интересно, как поведет себя реактор, если мы…
Судя по всему, идет очередной химический опыт.
Входим. Просторная комната. Но ничего похожего на химическую лабораторию: ни пробирок, ни вытяжных шкафов, ни реакторов. Посредине комнаты стоит аналоговая электронно-вычислительная машина, на стенах — таблицы, схемы. И все.
Около
— Давайте-ка, Володя, снизим температуру масла.
Скоморохов слегка поворачивает ручку на пульте.
— Еще немного…
Еще поворот. Самописец потянул кривую вниз…
Десятилетиями в химии складывалась и стала привычной такая практика: после того как в лаборатории получены данные о каком-либо процессе, начинается длительная, многостадийная его проверка и отработка. Сначала эксперименты ставятся на модельных установках, затем на укрупненных, потом на опытных и наконец на опытно-промышленных. Лишь после этого считается возможным приступить к проектированию и строительству промышленного аппарата.
Дело в том, что химические процессы весьма сложны, зависят от многих факторов, в том числе и от размеров аппарата. Иной раз реакция превосходно протекает в модельной установке, но совсем не идет в полупромышленной. И тогда приходится строить новые и новые установки, искать на ощупь благоприятные условия для ведения реакции в производственном масштабе. В итоге путь научной разработки от исследовательской лаборатории до промышленного производства занимает иногда десять — двенадцать лет.
И вот некоторое время назад в этой, казалось бы, непреодолимой стене многостадийной проверки была пробита первая брешь. Химики Г. К. Боресков и М. Г. Слинько предложили создавать контактные аппараты для производства серной кислоты не путем эмпирического поиска, а с помощью математического расчета. Сейчас эти аппараты так и создаются — рассчитываются.
Но еще сильнее стена давних традиций зашаталась, когда были созданы быстродействующие вычислительные машины и математика поднялась на новую ступень развития. Химики не преминули взять на вооружение математические новшества и вскоре доказали, что с помощью абстрактного моделирования химических процессов и аппаратов можно в ряде случаев от лабораторных опытов переходить непосредственно к крупнотоннажному заводскому производству.
Как это делается? Любой химический процесс можно разложить на отдельные «части», его составляющие. Каждый такой «частный» процесс легче изучить в лаборатории отдельно и составить его математическое описание, то есть выразить математическим уравнением, формулой. Полученные данные об отдельных процессах и их взаимном влиянии вводят в виде уравнений в электронно-вычислительную машину — так создается математическая модель химико-технологического процесса. Точно так же можно описать уравнениями и любой реактор, любой аппарат, в котором должны происходить химические превращения.
Результаты, получаемые при детальном изучении математических моделей процессов и реакторов, мало отличаются от тех, которые достигаются при исследовании реально существующих процессов и аппаратов. Но какой колоссальный выигрыш во времени! Когда Ю. Матрос просит снизить температуру масла и В. Скоморохов чуть поворачивает ручку на пульте, они узнают от машины итог эксперимента не через несколько часов, а через десять секунд! Более того: располагая данными, получаемыми путем математического моделирования, можно предсказывать, как пойдет технологический процесс в любых реакторах, даже в тех, которые еще не существуют.
Сегодня уже многие химико-математические абстракции материализуются, сразу превращаясь, минуя стадии вспомогательных исследований, в реальные — железные, стальные, титановые или иные весомые и зримые химические установки и реакторы. Скажем, в Новосибирске, на одном из химических заводов работает аппарат, созданный производственниками и учеными с помощью математического моделирования. С того времени, когда начались лабораторные исследования, и до того, как аппарат стал выдавать промышленную продукцию (безметанольный формальдегид — сырье для производства пластмасс), прошло лишь три года. Причем значительная часть времени ушла на изготовление и монтаж аппарата. По рекомендациям Института катализа спроектирован еще ряд промышленных установок. В основе их создания — та же абстракция.