Чтение онлайн

на главную - закладки

Жанры

Клад острова Морица
Шрифт:

Фундаментом этой работы послужила заманчивая идея, высказанная задолго до того математиками-теоретиками. Весьма грубо, приблизительно ее можно изложить так: если построить систему, состоящую из большого количества одинаковых элементов, совершенно одинаково связанных друг с другом, то такая система, иначе говоря, простейшая ткань, будет способна считать и запоминать поступающие извне сигналы, а также будет надежна в работе.

Эта мысль заинтересовала многих ученых. Как известно, ламповые электронно-вычислительные устройства чрезвычайно сложны. Кроме того, они весьма «нежны»: стоит выйти из строя нескольким лампам, и машина начнет «нести чепуху». А предложенная математиками простейшая система подобна живому мозгу: отмирание нескольких ее «клеток» не сказывается на результатах деятельности

всей ткани. Исследования в этой области могли бы привести к созданию удивительных кибернетических устройств, которые при максимальной простоте были бы гибки и надежны в работе.

Но как осуществить такие исследования? Конечно, схему-ткань можно было бы сконструировать. Но это очень дорого и долго: каждую схему пришлось бы собирать из десятков, если не сотен тысяч элементов. И при этом неизвестно, какой будет результат, окупятся ли затраты.

Сотрудники лаборатории кибернетики пошли по другому пути. Вот пачка картонных карточек, испещренных отверстиями. Это запись на языке ЭВМ всех сведений о том, какой должна быть интересующая нас ткань. Перфокарты вводятся в электронно-вычислительную машину, и она запоминает все данные. В «электронном воображении» машины возникает четкое представление о нужной нам ткани. Теперь над этой воображаемой тканью можно производить любые эксперименты. В машину вводятся карточки с записью условий опыта. Неважно, что ткани нет на самом деле, что ничем реальным ее не прокалывают, не рвут, не режут, что она существует лишь в «воображении», в «мечтах» электронного мозга. Эти «мечты» столь точны, что нет принципиальной разницы между опытами наяву и в математической абстракции. О результатах эксперимента машина рассказывает языком цифр, напечатанных на ленте.

Исследования во многом подтвердили теоретические положения. Система (ткань) действительно могла запоминать, считать и быстро восстанавливала свою работоспособность, если какие-то «точки», элементы, под внешним воздействием «умирали» — выходили из строя. Но этого мало. После одного эксперимента математики заметили, что в определенных условиях ткань вдруг «оживала» и начинала пульсировать так, как пульсирует сердце лягушки.

Новые эксперименты, новые расчеты… И вот уже в руках ученых пачка перфокарт — создана математическая модель сердечной мышцы. Теперь в любой момент в электронном мозгу машины можно вызвать «представление» о сердце и ставить на этом воображаемом «сердце» опыты, соответствующие медицинским. И вот что особенно интересно: эти опыты дали результаты, аналогичные тем, какие получают физиологи при обычных экспериментах на настоящем сердце.

Работами математиков заинтересовались физиологи. Почему? Во-первых, потому, что на воображаемой сердечной или мозговой ткани можно ставить такие опыты, которые не поставишь на реальных органах. Во-вторых, потому, что параллельные эксперименты на живом органе и на созданном в теории помогут внести ясность в спорные вопросы физиологии, помогут лучше понять, как возникают и развиваются некоторые тяжелые заболевания сердца и мозга.

Материализация абстракций

Прошло не так много времени с того дня, когда в Ленинградском вычислительном центре я пытался уразуметь, как это можно создавать нечто (а тем более живую ткань) из ничего, да еще производить над этой абстракцией какие-то — абстрактные же! — опыты. И вот я в Институте катализа Сибирского отделения Академии наук СССР. Царство тонких и сложных превращений вещества. Здесь властвует химия.

— Не только химия, — говорят мне хозяева. — У нас не меньшими правами располагает и математика. Впрочем, давайте зайдем сюда.

Подходим к приоткрытой двери, из-за которой слышны команды:

— Уменьшить концентрацию спирта! Хорошо… Сейчас подогрейте газ. Еще немного… Готово! А теперь, Володя, будем резко менять режим. Интересно, как поведет себя реактор, если мы…

Судя по всему, идет очередной химический опыт.

Входим. Просторная комната. Но ничего похожего на химическую лабораторию: ни пробирок, ни вытяжных шкафов, ни реакторов. Посредине комнаты стоит аналоговая электронно-вычислительная машина, на стенах — таблицы, схемы. И все.

Около

машины — двое. Один — научный сотрудник Юрий Матрос — не отрывает глаз от листа бумаги, на котором самописец вычерчивает кривую. Время от времени он оборачивается к Владимиру Скоморохову, специалисту по аналоговым машинам:

— Давайте-ка, Володя, снизим температуру масла.

Скоморохов слегка поворачивает ручку на пульте.

— Еще немного…

Еще поворот. Самописец потянул кривую вниз…

Десятилетиями в химии складывалась и стала привычной такая практика: после того как в лаборатории получены данные о каком-либо процессе, начинается длительная, многостадийная его проверка и отработка. Сначала эксперименты ставятся на модельных установках, затем на укрупненных, потом на опытных и наконец на опытно-промышленных. Лишь после этого считается возможным приступить к проектированию и строительству промышленного аппарата.

Дело в том, что химические процессы весьма сложны, зависят от многих факторов, в том числе и от размеров аппарата. Иной раз реакция превосходно протекает в модельной установке, но совсем не идет в полупромышленной. И тогда приходится строить новые и новые установки, искать на ощупь благоприятные условия для ведения реакции в производственном масштабе. В итоге путь научной разработки от исследовательской лаборатории до промышленного производства занимает иногда десять — двенадцать лет.

И вот некоторое время назад в этой, казалось бы, непреодолимой стене многостадийной проверки была пробита первая брешь. Химики Г. К. Боресков и М. Г. Слинько предложили создавать контактные аппараты для производства серной кислоты не путем эмпирического поиска, а с помощью математического расчета. Сейчас эти аппараты так и создаются — рассчитываются.

Но еще сильнее стена давних традиций зашаталась, когда были созданы быстродействующие вычислительные машины и математика поднялась на новую ступень развития. Химики не преминули взять на вооружение математические новшества и вскоре доказали, что с помощью абстрактного моделирования химических процессов и аппаратов можно в ряде случаев от лабораторных опытов переходить непосредственно к крупнотоннажному заводскому производству.

Как это делается? Любой химический процесс можно разложить на отдельные «части», его составляющие. Каждый такой «частный» процесс легче изучить в лаборатории отдельно и составить его математическое описание, то есть выразить математическим уравнением, формулой. Полученные данные об отдельных процессах и их взаимном влиянии вводят в виде уравнений в электронно-вычислительную машину — так создается математическая модель химико-технологического процесса. Точно так же можно описать уравнениями и любой реактор, любой аппарат, в котором должны происходить химические превращения.

Результаты, получаемые при детальном изучении математических моделей процессов и реакторов, мало отличаются от тех, которые достигаются при исследовании реально существующих процессов и аппаратов. Но какой колоссальный выигрыш во времени! Когда Ю. Матрос просит снизить температуру масла и В. Скоморохов чуть поворачивает ручку на пульте, они узнают от машины итог эксперимента не через несколько часов, а через десять секунд! Более того: располагая данными, получаемыми путем математического моделирования, можно предсказывать, как пойдет технологический процесс в любых реакторах, даже в тех, которые еще не существуют.

Сегодня уже многие химико-математические абстракции материализуются, сразу превращаясь, минуя стадии вспомогательных исследований, в реальные — железные, стальные, титановые или иные весомые и зримые химические установки и реакторы. Скажем, в Новосибирске, на одном из химических заводов работает аппарат, созданный производственниками и учеными с помощью математического моделирования. С того времени, когда начались лабораторные исследования, и до того, как аппарат стал выдавать промышленную продукцию (безметанольный формальдегид — сырье для производства пластмасс), прошло лишь три года. Причем значительная часть времени ушла на изготовление и монтаж аппарата. По рекомендациям Института катализа спроектирован еще ряд промышленных установок. В основе их создания — та же абстракция.

Поделиться:
Популярные книги

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Пропала, или Как влюбить в себя жену

Юнина Наталья
2. Исцели меня
Любовные романы:
современные любовные романы
6.70
рейтинг книги
Пропала, или Как влюбить в себя жену

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Всплеск в тишине

Распопов Дмитрий Викторович
5. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Всплеск в тишине

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Долг

Кораблев Родион
7. Другая сторона
Фантастика:
боевая фантастика
5.56
рейтинг книги
Долг

И только смерть разлучит нас

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
И только смерть разлучит нас

Лорд Системы 4

Токсик Саша
4. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 4

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Гарем вне закона 18+

Тесленок Кирилл Геннадьевич
1. Гарем вне закона
Фантастика:
фэнтези
юмористическая фантастика
6.73
рейтинг книги
Гарем вне закона 18+

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену