Конструкции, или почему не ломаются вещи
Шрифт:
Если выполнить соответствующие расчеты, то оказывается что упругими характеристиками, обеспечивающими полную устойчивость при больших деформациях рассматриваемой системы с внутренним давлением, являются только характеристики типа тех, что представлены на рис. 53. Такая форма зависимости напряжения от деформации (с небольшими вариациями) и в самом деле является весьма обычной для тканей животных, в особенности для пленок. Почувствовать это можно, потянув себя за мочку уха.
Рис. 53. Кривая деформирования, типичная для мягких тканей животных.
В связи с рис. 53 возникает вопрос, проходит ли для рассматриваемых материалов кривая зависимости напряжения от деформации через начало координат (точку, где и напряжение, и деформация
Как мы увидим ниже, это натяжение артерий может служить дополнительным средством для предотвращения тенденции к изменению их длины при изменении давления крови. Иначе говоря, оно служит целям выравнивания осевого и окружного напряжений в стенках артерии, то есть стремится вернуть систему к тому состоянию, которое характерно для поверхностного натяжения, и поэтому, возможно, существовало в живой природе в очень далеком прошлом. У людей, испытывающих сильную и продолжительную вибрацию, например у лесорубов, работающих цепными пилами, это натяжение может быть утрачено, тогда артерии у них удлиняются и становятся изогнутыми, скрученными или зигзагообразными.
Коэффициент Пуассона, или как работают наши артерии
Сердце - это, по существу, насос, который вгоняет кровь в артерии посредством довольно резких пульсаций. Работа сердца облегчается тем обстоятельством (которое идет и на благо организма в целом), что в нагнетательной, или систолической, фазе сердечного цикла справиться с избытком крови высокого давления помогает упругое растяжение аорты и больших артерий. Это сглаживает колебания давления и в целом улучшает циркуляцию крови. В действительности упругость артерий во многом играет ту же роль, что и воздушный рессивер, который конструктор часто ставит в системе, содержащей механический поршневой насос. В этом простом устройстве волна давления, которая сопровождает нагнетательный ход поршня, сглаживается за счет того, что нагнетаемой жидкости временно приходится сжимать воздух, удерживаемый над жидкостью в закрытом сосуде. Когда после окончания нагнетательного хода поршня клапан насоса закрывается (то же происходит и в диастолической фазе сердечного цикла), жидкость продолжает движение в гидросистеме за счет расширения сжатого воздуха (рис. 54).
Рис. 54. Упругое растяжение аорты и артерий играет ту же роль в сглаживании колебаний давления, что и наличие воздушного рессивера в поршневом насосе.
Это ритмичное чередование расширения артерий и их возвращения в исходное состояние благотворно и необходимо. Если с возрастом стенки артерий становятся более жесткими и менее эластичными, то давление крови повышается и сердцу приходится производить большую работу, что может отрицательно сказаться на его состоянии. Об этом знает большинство из нас, но о имеющейся здесь связи с деформациями стенок артерий задумываются немногие.
Как мы нашли в гл. 5, осевое напряжение в цилиндрической оболочке, такой, как стенка артерии, составляет ровно половину окружного напряжения. Это справедливо всегда, независимо от материала оболочки или трубы. Поэтому если бы закон Гука выполнялся в приведенной выше грубой формулировке, то осевая деформация также составляла бы половину окружной и общее удлинение артерии происходило бы в соответствующих пропорциях к ее первоначальным размерам.
Вспомним теперь, что главные артерии, такие, как артерии ног, могут иметь диаметр где-то около сантиметра, а длину около метра. Если упомянутые деформации действительно относились бы как два к одному, то, как показывает простой расчет, изменению диаметра артерии на 0,5 мм, которое без труда "умещается" в организме, соответствовало бы изменение длины на 25 мм.
Очевидно, что такого порядка изменения длины с частотой 70 раз в минуту невозможны и их на самом деле нет. Если бы такое происходило, наше тело вообще не могло бы функционировать. Достаточно только представить себе, что такое происходит с сосудами мозга.
К счастью, на самом деле продольные удлинения в
Если вы натянете резиновую ленту, она станет заметно тоньше, то же самое происходит и со всеми другими твердыми телами, хотя для большинства материалов это не так бросается в глаза. Напротив, если вы уменьшите длину куска материала, сжав его, поперечные размеры увеличатся. И то и другое происходит благодаря действию упругих сил, и первоначальная форма тела восстанавливается при снятии нагрузки.
Мы не замечаем этих поперечных перемещений в таких веществах, как сталь или кость, в силу малости как продольной, так и поперечной деформаций, но фактически и здесь дело обстоит точно так же. То обстоятельство, что подобные эффекты характерны для всех твердых тел и такое поведение существенно для практических задач, было впервые отмечено французом С.Д. Пуассоном (1781-1840). Он родился в очень бедной семье и в детстве не получил сколько-нибудь систематического образования, но в возрасте тридцати одного года стал академиком, а во Франции это одна из наивысших почестей, и он удостоился ее за свои работы в области теории упругости. Как было сказано в гл. 2, закон Гука гласит, что модуль Юнга = E = (напряжение / деформация) = s/e.
Поэтому, если мы приложим к плоской пластинке растягивающее напряжение s1, она удлинится упругим образом, так что в направлении растяжения деформация будет иметь величину e1 = s1/E.
Однако, кроме того, пластинка сократится в поперечном направлении (то есть в направлении под прямым углом к напряжению s1), и величину соответствующей деформации мы обозначим e2. Пуассон обнаружил, что для каждого материала отношение деформаций e1 и e2 есть величина постоянная, и это отношение теперь принято называть коэффициентом Пуассона. Ниже мы всюду будем использовать для этой величины обозначение . Таким образом, для данного материала, подвергаемого простому одноосному нагружению напряжением s1, =e2/e1 = коэфициент Пуассона [50]
50
Поскольку деформация e2 всегда имеет знак, противоположный знаку деформации e1, коэффициент Пуассона обязан быть отрицательным и выражаться числом со знаком минус. Однако знак минус мы будем опускать. В вычислениях, которые мы будем делать, это будет компенсировано нужным выбором знака в соответствующих формулах.
Деформацию e1 в направлении напряжения s1 можно назвать первичной деформацией, а деформацию e2, вызванную напряжением s1 в перпендикулярном ему направлении, - вторичной деформацией (рис. 55). Согласно этому, e2 = e1, а так как e1 = s1 / E (это - закон Гука), то e2 = s1 / E.