Чтение онлайн

на главную

Жанры

Конструкции, или почему не ломаются вещи
Шрифт:

Рис. 55. При одноосном нагружении твердого тела растягивающим напряжением s1 тело испытывает в направлении этого нагружения деформацию e1, а в поперечном направлении сокращается, при этом деформация равна e2.

Таким образом, если мы знаем значения величин и E, мы можем вычислить и первичную, и вторичную деформации.

Для материалов, используемых в технике, таких, как металлы, камень и бетон, значения лежат всегда между 1/4 и 1/3. Для твердых биологических материалов значения

коэффициента Пуассона обычно выше, и часто они лежат вблизи 1/2. Преподаватели элементарной теории упругости сказали бы вам, что коэффициент Пуассона не может принимать значений больше 1/2, иначе происходили бы разного рода абсурдные и неприемлемые вещи. Это справедливо лишь отчасти, и значения коэффициента Пуассона для некоторых биологических материалов являются очень высокими, часто они больше единицы [51] . Экспериментальное значение коэффициента Пуассона для моего живота, измеренное недавно мною в ванне, составляет примерно единицу (см. сноску выше).

51

Чтобы избавить негодующих специалистов от лишней переписки, замечу, что мне хорошо известно о связанных с этим энергетических аспектах. Такие аномалии имеют разумное объяснение.

Таким образом, как сказано выше, благодаря коэффициенту Пуассона, если мы растягиваем в каком-либо одном направлении кусок материала, такой, как пленка или стенка артерии, он удлиняется в этом направлении, но одновременно сокращается в перпендикулярных. Поэтому в случаях, когда растягивающее напряжение действует не в одном, а в двух взаимно перпендикулярных направлениях, возникающие деформации будут разностью тех деформаций, которые создало бы каждое из этих напряжений в отдельности, и окажутся поэтому меньше последних.

При одновременном действии напряжений s1 и s2 суммарная деформация в направлении действия s1 будет e1 = (s1s2)/E, а суммарная деформация в направлении действия s2 будет e2 = (s2s1)/E.

Отсюда, используя результаты, приведенные в гл. 5 [52] , с учетом коэффициента Пуассона получаем, что продольная деформация стенок трубы, находящейся под внутренним давлением и сделанной из материала, подчиняющегося закону Гука, будет e2 = (rp/2tE)(1 - 2), где r– радиус, р– давление, t– толщина стенок.

52

s1/s2 = 2;s2= rp/2t. – Прим. перев.

В результате увеличение длины трубы оказывается значительно меньшим, чем можно было бы ожидать; для гуковского же материала с коэффициентом Пуассоны, равным 1/2, продольные перемещения вообще отсутствуют. В действительности, как говорилось выше, материал стенок артерий не подчиняется закону Гука, в то же время коэффициент Пуассона для него, вероятно, больше 1/2. Возможно, эти два фактора взаимно компенсируются, поскольку соответствующие удлинения, фактически наблюдаемые в эксперименте, очень малы [53] . Несомненно, тот факт, что артерии постоянно находятся в организме в натянутом состоянии, свидетельствует о мерах предосторожности, принятых Природой против любых возможных остаточных удлинений кровеносных сосудов.

53

Примечание для биомехаников. Проведенное рассуждение на основе закона Гука является упрощенным. Для систем, не подчиняющихся закону Гука, если обозначить E1 и E2 соответвующие касательные модули, продольная деформация приближается к нулю при условии, что (E1/E2) = 2. В то время как для большинства мягких тканей при деформациях объем приблизительно остается постоянным, что свидетельствует о близости для них коэффициента Пуассона к 1/2, деформации большинства мембран являются плоскими, то есть мембраны при растяжении не утончаются, и, таким образом, для них коэффициент Пуассона составляет примерно единицу - как для моего живота. Значение E1/E2, отвечающее отсутствию продольной деформации, оказывается при этом около двух, что довольно правдоподобно. Но почему, однако, пленка не становится тоньше при ее растяжении? В связи с этим вопросом см., например, Evans Е. A. Proc. Int. Conf. on Comparative Physiology (North Holland Publishing Company, 1974).

Эффекты, связанные с коэффициентом Пуассона, по-видимому, играют важную роль в поведении тканей животных; но они важны и в технике, о чем свидетельствуют все новые факты, возникающие, как правило, неожиданно и в самых разных сочетаниях.

Возможно, следует также добавить, что, в то время как аорта и главные артерии расширяются и сокращаются упругим образом в такт с биением сердца, с артериями меньшего размера дело обстоит несколько иначе. Стенки этих артерий соединены с мышечной тканью, которая может увеличивать их эффективную жесткость и таким образом, ограничивая диаметр этих артерий, влиять на количество крови, подводимое к каждому из участков тела. Таким путем регулируется кровоснабжение тела.

Надежность, или о вязкости тканей животных

У животных довольно часто случаются переломы костей и разрывы сухожилий; упругие свойства костей и сухожилий отличаются от свойств тканей, рассматриваемых в этой главе. Примечательно, однако, что механические разрушения мягких тканей животных происходят довольно редко. На это имеется несколько причин. Шкура и мягкие части тела животного, будучи очень нежесткими, могут не получить серьезных повреждений при ударе; подвергаясь большим деформациям, животное отделывается только синяками. Более интересен, однако, вопрос о концентрации напряжений, поскольку мягкие ткани животных практически не боятся концентрации, этой главной причины катастроф инженерных сооружений. Ткани животных не требуют большого коэффициента запаса, поэтому конструктивная эффективность, то есть выдерживаемая конструкцией нагрузка, приходящаяся на единицу веса конструкции, может быть очень высокой.

Такой иммунитет к концентрации напряжений определяется отнюдь не мягкостью тканей и малым модулем Юнга. Резина тоже мягкая, и ее модуль Юнга тоже очень мал, однако все мы помним с детства, как выпущенные в сад воздушные шарики очень скоро с шумом лопались, наткнувшись на шипы первого же куста. Детьми мы не понимали, что из-за концентрации напряжений и малой величины работы разрушения от прокола в натянутой резине очень быстро распространяется трещина, а если бы и понимали, то вряд ли это уменьшило бы наши огорчения. Перепонка же крыла летучей мыши ведет себя иначе, хотя также сильно натягивается в полете. При проколе крыла разрыв от этого места распространяется редко и повреждение скоро заживает, несмотря на то что мышь не перестает летать.

Объяснение этого кроется, я думаю, в существенных различиях упругих свойств и величин работы разрушения резины и биологических тканей. В настоящее время данные о работе разрушения мягких биологических тканей, по существу, отсутствуют, однако зависимости напряжения от деформации в большинстве случаев известны очень хорошо, а между формой этих зависимостей и работой разрушения, по-видимому, имеется тесная связь.

Интересный пример составляет пленка куриного яйца - пленка, которую мы видим за завтраком сразу под скорлупой вареного яйца. Это одна из немногих биологических мембран, которые подчиняются закону Гука, в данном случае - вплоть до деформаций около 24%, когда происходит разрыв пленки. Простой (правда, грозящий легкими неприятностями) эксперимент с сырым яйцом показывает, что эта пленка легко рвется. Так, конечно, и должно быть, поскольку иначе цыпленку было бы трудно вылупиться из яйца. Между прочим, округлая форма самой скорлупы такова, что ее трудно разрушить снаружи, но легко разбить изнутри.

Поделиться:
Популярные книги

Мимик нового Мира 13

Северный Лис
12. Мимик!
Фантастика:
боевая фантастика
юмористическая фантастика
рпг
5.00
рейтинг книги
Мимик нового Мира 13

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Адепт: Обучение. Каникулы [СИ]

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.15
рейтинг книги
Адепт: Обучение. Каникулы [СИ]

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Возвышение Меркурия. Книга 7

Кронос Александр
7. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 7

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Вперед в прошлое 3

Ратманов Денис
3. Вперёд в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 3

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Кодекс Охотника. Книга VI

Винокуров Юрий
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VI

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Мимик нового Мира 7

Северный Лис
6. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 7

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь