Чтение онлайн

на главную

Жанры

Космические рубежи теории относительности
Шрифт:

Чтобы исследовать самые глубокие области керровской чёрной дыры, вообразим, что мы посылаем лучи света параллельно оси вращения и очень близко к ней, так что значение прицельного параметра для этих лучей света меньше, чем необходимое для попадания в кольцевую сингулярность. Поэтому лучи света, идущие по оси вращения или очень близко к ней, пройдут сквозь кольцо в отрицательное пространство. Значит, чтобы изобразить траектории таких лучей света полностью, следует включить в схему и отрицательное пространство. Лучи света на рис. 12.5 и 12.8 вообще не проходят сквозь сингулярность и потому всегда остаются в положительном пространстве - их расстояние от сингулярности всегда выражается положительными числами. Однако, как только объект вошел в отрицательное пространство, его расстояние от сингулярности становится отрицательным числом. Эта трудность преодолена на рис. 12.10 очень просто:

верхняя половина схемы представляет положительное пространство, а нижняя половина - отрицательное. Поэтому на рис. 12.10 свет, идущий по оси вращения или очень близко от неё, прямо проходит из положительного пространства сквозь центр кольца в отрицательное пространство.

РИС. 12.10. Траектории света сквозь кольцевую сингулярность. В верхней половине этой схемы изображено положительное пространство (откуда приходят эти лучи света), а в нижней половине - отрицательное пространство (куда эти лучи уходят). Лучи света отклоняются в сторону от кольцевой сингулярности благодаря гравитационному отталкиванию вблизи неё. Некоторые лучи света могут попасть на круговые орбиты в отрицательном пространстве. (Схема построена для предельного решения Керра, когда М = а.)

Рассматривая прохождение лучей света сквозь сингулярность, отметим прежде всего, что лучи отклоняются в сторону от краев кольца. Это опять-таки связано с гравитационным отталкиванием вблизи сингулярности. Однако нас ждет одна неожиданность. На рис. 12.10 показан луч света, проходящий сквозь сингулярность и прыгающий взад и вперёд по дуге эллипса в отрицательном пространстве. Вспомним ещё, что эллипс - это кривая, находящаяся на постоянном расстоянии от сингулярности (см. рис. 12.2, где изображены сплющенные эллипсоидальные координаты). Таким образом, этот луч света сохраняет в отрицательном пространстве постоянное расстояние от сингулярности. Значит, он движется по круговой орбите! А так как он прыгает взад и вперёд, то его траектория называется маятниковой круговой орбитой. Типичная маятниковая круговая орбита в отрицательном пространстве схематически изображена на рис. 12.11.

РИС. 12.11. Маятниковые круговые орбиты в отрицательном пространстве. Лучи света, которые прошли сквозь сингулярность, имея точно выдержанное значение прицельного параметра, попадают на круговую орбиту вокруг сингулярности в отрицательном пространстве. Эти орбиты называются маятниковыми, так как лучи света отскакивают взад и вперёд на поверхности постоянного расстояния (поверхности эллипсоида) от сингулярности. Это расстояние отрицательно.

Хотя на рис. 12.10 показан только один луч света, захваченный на маятниковую круговую орбиту, существует целый диапазон значений прицельного параметра для лучей света, почти параллельных оси вращения, при которых они захватываются на подобные удивительные орбиты. В результате в отрицательном пространстве существует ряд маятниковых круговых орбит. На рис. 12.12 изображены границы всех возможных маятниковых круговых орбит для быстро вращающейся чёрной дыры. Заметим, что всё изображенное на рис. 12.12 полностью находится в отрицательном пространстве, а соответствующие ему рис. 12.7 и 12.9-полностью в положительном пространстве. Все маятниковые круговые орбиты неустойчивы.

РИС. 12.12. Разброс маятниковых круговых орбит света в отрицательном пространстве (r < 0). Все возможные маятниковые круговые орбиты вблизи сингулярности керровской чёрной дыры (при а = 90%М) лежат внутри границ, показанных на схеме. Внутри этой области отрицательного пространства лучи света отскакивают туда и обратно по эллипсоидальной поверхности.

Чтобы довести до конца наш анализ распространения световых лучей, заметим, что, согласно рис. 12.10, луч, проходящий рядом с внутренним краем кольца, может проникнуть в отрицательное пространство и снова отразиться назад. Тот факт, что луч может на мгновение нырнуть в отрицательное пространство и вернуться оттуда, сыграет важную роль при рассмотрении картины керровской чёрной дыры, какой она представляется удалённому астроному.

Наконец, рассмотрим луч света, приходящий к керровской сингулярности со стороны отрицательной Вселенной. Те из них, которые идут по оси вращения или очень близко к ней, непосредственно попадают в положительное пространство сквозь кольцевую сингулярность. Однако, как показано на рис. 12.13, все лучи света, обладающие при сближении с чёрной дырой большими значениями прицельного параметра, отталкиваются от неё. При взгляде из отрицательного пространства дыра оказывается источником антигравитации. Она всё отталкивает от себя и ничего не притягивает. Вот почему отрицательная Вселенная иногда называется «миром антигравитации».

РИС. 12.13. Лучи света, идущие от отрицательного пространства. Приближающиеся к вращающейся чёрной дыре из отрицательного пространства лучи света отталкиваются этой дырой. В отрицательном пространстве вращающаяся чёрная дыра является источником антигравитации. (Схема построена для предельного решения Керра, когда М = а.)

Теперь, после того как мы подробно рассмотрели ход различных траекторий лучей света вблизи керровской чёрной дыры, можно представить себе, как будет выглядеть вращающаяся чёрная дыра для удалённого астронома или достаточно смелого космонавта. Представим себе сначала астронома в нашей Вселенной, наблюдающего керровскую чёрную дыру. Поскольку дыра обладает осевой симметрией, астроном будет наблюдать разные картины в зависимости от того, под каким углом к оси вращения дыры он наблюдает. Для удобства на рис. 12.14 введен азимутальный угол . При = 0 удалённый астроном смотрит прямо вдоль оси вращения дыры, а при = 90° - вдоль её экваториальной плоскости.

РИС. 12.14. Азимутальный угол . Если рассматривать керровскую чёрную дыру под разными углами, она будет выглядеть различно. Для указания, с какого направления рассматривается чёрная дыра, удобно пользоваться азимутальным углом .

РИС. 12.15. Как выглядит сингулярность. На этой последовательности схем показано, как выглядит сингулярность предельной керровской чёрной дыры (М = а) под разными углами. Свет из отрицательного пространства проникает сквозь центр кольцевой сингулярности (изображен пунктирной линией).

Пусть наш астроном излучает центр вращающейся чёрной дыры с помощью чрезвычайно мощного телескопа. Астроном находится так далеко от дыры, что пространство-время для него плоское, а телескоп направлен прямо на сингулярность. На рис. 12.15, выполненном по расчётам Каннингэма, показано, что увидит астроном под разными углами в случае предельной керровской дыры (М = а). Глядя вниз по оси вращения (при = 0), он видит круговую область, заполненную светом, проходящим из отрицательного пространства через кольцевую сингулярность. Если сама сингулярность также излучает свет (а это действительно так; причины будут обсуждены в одной из следующих глав), то её излучение выглядит как кольцо, окружающее круг света, идущего из отрицательного пространства. Между кругом света из отрицательного пространства и световым кольцом от сингулярности находится область, в которой распространяется свет из положительного пространства - тот самый, который сначала нырнул в отрицательное пространство, а потом снова вынырнул оттуда. Свет из предыдущей Вселенной прошлого (в положительном пространстве), пришедший к дыре рядом с внутренним краем кольцевой сингулярности, подвергается действию сильного антигравитационного поля. Поэтому такой свет отталкивается сингулярностью и снова выбрасывается в положительное пространство нашей Вселенной. Снова необходимо подчеркнуть, что говорить о выходе света из керровской чёрной дыры можно потому, что мы рассматриваем здесь сильно идеализированный теоретический случай. В такое полное решение Керра фактически входят как чёрная, так и белая дыра.

Поделиться:
Популярные книги

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Хочу тебя навсегда

Джокер Ольга
2. Люби меня
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Хочу тебя навсегда

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Расческа для лысого

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
8.52
рейтинг книги
Расческа для лысого

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Заход. Солнцев. Книга XII

Скабер Артемий
12. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Заход. Солнцев. Книга XII

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам