Космические рубежи теории относительности
Шрифт:
РИС. 11.14. Полная диаграмма Пенроуза для керровской чёрной дыры (М > а). Эта полная диаграмма Пенроуза получается при объединении фрагментов, показанных на рис. 11.12 и 11.13. Следует рассматривать её как повторяющуюся до бесконечности в будущее и в прошлое, подобно ленте с трафаретным рисунком. (Ср. с рис. 10.10.)
Заметим, что полученная диаграмма Пенроуза для керровской чёрной дыры при М > а очень похожа на диаграмму Пенроуза для чёрной дыры Райснера-Нордстрёма при М > |Q|,
В случае решения Райснера-Нордстрёма трем возможным вариантам (М > |Q|, М = |Q| и М < |Q|) соответствовали диаграммы Пенроуза резко различного вида. Точно так же и для решения Керра диаграммы Пенроуза, соответствующие трем разным вариантам (М > a, М = a и М < a), сильно отличаются друг от друга. Описанные выше рассуждения, на основе которых мы получили рис. 11.14, относились к случаю малых или умеренных значений момента импульса (М > a). Чтобы проанализировать предельную геометрию Керра (М = a), возвратимся снова к упрощённой диаграмме пространства-времени. В случае предельной керровской чёрной дыры внутренний и внешний горизонты событий сливаются в один. При этом промежуточная область между горизонтами исчезает. Поэтому, как показано на рис. 11.15, при пересечении нового (двойного) горизонта событий в целом смены пространственноподобного направления на временноподобное и наоборот не происходит. Временноподобное направление повсюду вертикально, а пространсгвенноподобное - горизонтально.
РИС. 11.15. Диаграмма пространства-времени для предельной керровской чёрной дыры (М = a). Если чёрная дыра вращается столь быстро, что М = a, внутренний и внешний горизонты событий сливаются. Область, существовавшая между этими горизонтами, теперь исчезает, и при пересечении такого (двойного) горизонта пространственноподобное и временноподобное направления не испытывают изменений.
Чтобы построить диаграмму Пенроуза для предельной керровской чёрной дыры, рассмотрим снова космонавта, вылетевшего с Земли и нырнувшего в чёрную дыру. После пересечения всего лишь одного горизонта событий он встречается с сингулярностью. Однако, так как пространственноподобное и временноподобное направления в целом не меняются ролями, сингулярность должна быть временноподобной и изображаться на диаграмме Пенроуза вертикалью. У космонавта теперь имеются разные возможности. При полёте в экваториальной плоскости он может наткнуться на сингулярность, где заведомо жизнь станет ему не мила. Однако космонавт может приблизиться к центру чёрной дыры и под углом к экваториальной плоскости. В этом случае он пройдет сквозь кольцевую сингулярность и вынырнет в мире антигравитации, изображенном, как обычно, в виде треугольника. Он может выбрать и третью возможность - вообще уклониться от центра чёрной дыры, повернуть назад и выйти сквозь горизонт событий в обычную Вселенную будущего, как показано на рис. 11.16. После этого он может либо остаться в этой новой Вселенной, нанося визиты на её планеты, либо вернуться в чёрную дыру и снова сделать выбор между теми же альтернативами. Поэтому диаграмма Пенроуза бесконечно продолжается как в прошлое, так и в будущее.
РИС. 11.16. Диаграмма Пенроуза для предельной керровской чёрной дыры (М = а). Конформную карту предельной керровской чёрной дыры можно получить, прослеживая возможные мировые линии космонавта. Как обычно, диаграмма повторяется бесконечное число раз в будущее и в прошлое. (Ср. с рис. 10.13.)
Отметим снова, что диаграмма Пенроуза для предельного решения Керра очень похожа на предельную диаграмму решения Райснера-Нордстрёма. Основным (и единственным) отличием является то, что теперь можно пройти сквозь керровскую сингулярность в миры антигравитации.
Наконец, если чёрная дыра вращается настолько быстро, что М < а, горизонты событий пропадают и «голая» сингулярность открывается взорам внешней Вселенной. Однако, в отличие от случая «голой» сингулярности Райснера-Нордстрёма, космонавт теперь может пройти сквозь кольцевую сингулярность и вынырнуть в мире антигравитации. Так получается диаграмма Пенроуза, показанная на рис. 11.17 и имеющая очень простой вид. При этом астроном может наблюдать свет, приходящий через кольцевую сингулярность из мира антигравитации. В свою очередь «чужой» астроном из мира антигравитации может наблюдать свет, приходящий из нашей Вселенной.
РИС. 11.17. «Голая» керровская сингулярность. Если чёрная дыра вращается настолько быстро, что а > М, оба горизонта событий исчезают, открывая для обозрения «голую» сингулярность. Космонавты могут путешествовать сквозь кольцевую сингулярность, разграничивающую нашу Вселенную и мир антигравитации.
Поскольку реальные чёрные дыры должны вращаться и поэтому их следует описывать с помощью геометрии Керра, поучительно проанализировать решения Керра поподробнее. В следующей главе мы специально уделим внимание тому, что увидят астрономы и космонавты при наблюдении и исследовании вращающихся чёрных дыр.
12
ГЕОМЕТРИЯ РЕШЕНИЯ КЕРРА
Астрофизики-теоретики часто сталкиваются в своих математических построениях с разными возможностями. Они могут облегчить или, наоборот, усложнить себе жизнь, если представят рассматриваемые уравнения в удобном для работы или, напротив, в громоздком виде. И это особенно верно по отношению к анализу геометрии вращающихся чёрных дыр.
При описании геометрии пространства в окрестностях керровской чёрной дыры физики могут по-разному выбирать способы для описания положения точек в этой окрестности. Речь идет о выборе системы координат, т.е. попросту о выборе сетки, которая покрывает пространство. Например, физик может ввести прямоугольные декартовы координаты. Такие координаты, изображенные в левой стороне рис. 12.1, выглядят как линии на обычной миллиметровке. Положение точки задаётся в прямоугольных координатах посредством указания расстояний в направлениях вверх-вниз и налево-направо.
РИС. 12.1. Разные системы координат (слева - декартовы прямоугольные, в середине - полярные, справа - эллипсоидальные). Система координат - это всего лишь сетка, с помощью которой определяют положение точек в пространстве. Для вращающихся чёрных дыр удобно выбрать эллипсоидальные координаты (они получаются при вращении правого рисунка вокруг его оси симметрии). Такая система координат лучше всего отражает особенности геометрии решения Керра.
Однако было бы весьма неразумно, если бы для описания пространства вблизи чёрной дыры физик выбрал прямоугольные декартовы координаты. Такие координаты удобны, чтобы описывать тела, которые сами обладают прямыми углами, а чёрные дыры совсем не похожи на кирпичи. Прямоугольные координаты не отражают свойств симметрии чёрных дыр, и физик не получит с их помощью удобных для работы уравнений.
Второй возможный выбор состоит в использовании полярных (или сферических) координат. В центре рис. 12.1 показан пример подобных координат с центром в некоторой выбранной точке. Положение другой точки задаётся в этих координатах расстоянием от центра и величиной угла.