Космические рубежи теории относительности
Шрифт:
Во время первой мировой войны Г. Райснер и Г. Нордстрём открыли решение эйнштейновских уравнений гравитационного поля, полностью описывающее «заряженную» чёрную дыру. У такой чёрной дыры может быть электрический заряд (положительный или отрицательный) и/или магнитный заряд (соответствующий северному или южному магнитному полюсу). Если электрически заряженные тела - дело обычное, то магнитно заряженные - вовсе нет. Тела, у которых есть магнитное поле (например, обычный магнит, стрелка компаса, Земля), обладают обязательно и северным и южными полюсами сразу. До самого последнего времени большинство физиков считали, что магнитные полюсы всегда встречаются только парами. Однако в 1975 г. группа учёных из Беркли и Хьюстона объявила, что в ходе одного из экспериментов ими открыт магнитный монополь. Если эти результаты подтвердятся, то окажется, что могут существовать и отдельные магнитные заряды, т.е. что северный магнитный полюс может существовать отдельно от южного, и обратно. Решение Райснера-Нордстрёма допускает возможность существования у чёрной дыры магнитного поля монополя. Независимо от того, как чёрная дыра приобрела свой заряд, все свойства этого заряда в решении Райснера-Нордстрёма объединяются в одну характеристику - число Q.
Размышляя о реальных чёрных дырах, которые могли бы реально существовать в нашей Вселенной, физики пришли к заключению, что решение Райснера-Нордстрёма оказывается не очень существенным, ибо электромагнитные силы намного больше сил тяготения. Например, электрическое поле электрона или протона в триллионы триллионов раз сильнее их гравитационного поля. Это значит, что если у чёрной дыры был бы достаточно большой заряд, то огромные силы электромагнитного происхождения быстро разбросали бы во все стороны газ и атомы, «плавающие» в космосе. В самое короткое время частицы, имеющие такой же знак заряда, как и чёрная дыра, испытали бы мощное отталкивание, а частицы с противоположным знаком заряда - столь же мощное притяжение к ней. Притягивая частицы с зарядом противоположного знака, чёрная дыра вскоре стала бы электрически нейтральной. Поэтому можно полагать, что реальные чёрные дыры обладают зарядом лишь малой величины. Для реальных чёрных дыр значение |Q| М. В самом деле, из расчётов следует, что чёрные дыры, которые могли бы реально существовать в космосе, должны иметь массу М по крайней мере в миллиард миллиардов раз большую, чем величина |Q|. Математически это выражается неравенством М >>|Q|.
Несмотря на эти, увы, прискорбные ограничения, налагаемые законами физики, весьма поучительно провести подробный анализ решения Райснера-Нордстрёма. Такой анализ подготовит нас к более основательному обсуждению решения Керра в следующей главе.
Чтобы проще подойти к пониманию особенностей решения Райснера-Нордстрёма, рассмотрим обычную чёрную дыру без заряда. Как следует из решения Шварцшильда, такая дыра состоит из сингулярности, окруженной горизонтом событий. Сингулярность расположена в центре дыры (при r = 0), а горизонт событий - на расстоянии 1 шварцшильдовского радиуса (именно при r =2М). Теперь представим себе, что мы придали этой чёрной дыре небольшой электрический заряд. Как только у дыры Появился заряд, мы должны обратиться к решению Райснера-Нордстрёма для геометрии пространства-времени. В решении Райснера-Нордстрёма имеются два горизонта событий. Именно, с точки зрения удалённого наблюдателя, существуют два положения на разных расстояниях от сингулярности, где время останавливает свой бег. При самом ничтожном заряде горизонт событий, находившийся ранее на «высоте» 1 шварцшильдовского радиуса, сдвигается немножко ниже к сингулярности. Но ещё более удивительно то, что сразу же вблизи сингулярности возникает второй горизонт событий. Таким образом сингулярность в заряженной чёрной дыре окружена двумя горизонтами событий - внешним и внутренним. Структуры незаряженной (шварцшильдовской) чёрной дыры и заряженной чёрной дыры Райснера-Нордстрёма (при М >> |Q|) сопоставлены на рис. 10.2.
РИС. 10.2. Заряженные и нейтральные чёрные дыры. Добавление хотя бы ничтожного по величине заряда приводит к появлению второго (внутреннего) горизонта событий прямо над сингулярностью.
Если мы будем увеличивать заряд чёрной дыры, то внешний горизонт событий станет сжиматься, а внутренний - расширяться. Наконец, когда заряд чёрной дыры достигнет значения, при котором выполняется равенство М = |Q| оба горизонта сливаются друг с другом. Если увеличить заряд ещё больше, то горизонт событий полностью исчезнет, и остаётся «голая» сингулярность. При М < |Q| горизонты событий отсутствуют, так что сингулярность открывается прямо во внешнюю Вселенную. Такая картина нарушает знаменитое «правило космической этики», предложенное Роджером Пенроузом. Это правило («нельзя обнажать сингулярность!») будет подробнее обсуждаться ниже. Последовательность схем на рис. 10.3 иллюстрирует расположение горизонтов событий у чёрных дыр, имеющих одну и ту же массу, но разные значения заряда.
РИС. 10.3. Изображение заряженных чёрных дыр в пространстве. По мере добавления заряда в чёрную дыру внешний горизонт событий постепенно сжимается, а внутренний - расширяется. Когда полный заряд дыры достигает значения |Q| = М, оба горизонта сливаются в один. При ещё больших значениях заряда горизонт событий вообще исчезает и остаётся открытая, или «голая», сингулярность.
Рис. 10.3 иллюстрирует положение горизонтов событий относительно сингулярности чёрных дыр в пространстве, но ещё полезнее проанализировать диаграммы пространства-времени для заряженных чёрных дыр. Чтобы построить такие диаграммы - графики зависимости времени от расстояния, мы начнем с «прямолинейного» подхода, использованного в начале предыдущей главы (см. рис. 9.3). Измеряемое наружу от сингулярности расстояние откладывается по горизонтали, а время, как обычно, - по вертикали. На такой диаграмме левая часть графика всегда ограничивается сингулярностью, описываемой линией, идущей вертикально от удалённого прошлого к далёкому будущему. Мировые линии горизонтов событий также представляют собой вертикали и отделяют внешнюю Вселенную от внутренних областей чёрной дыры.
РИС. 10.4. Диаграммы пространства-времени для заряженных чёрных дыр. Эта последовательность диаграмм иллюстрирует вид пространства-времени для чёрных дыр, имеющих одинаковую массу, но разные заряды. Вверху для сравнения приведена диаграмма для шварцшильдовской чёрной дыры (|Q| = 0).
На рис. 10.4 показаны диаграммы пространства-времени для нескольких чёрных дыр, имеющих одинаковые массы, но разные заряды. Вверху для сравнения приведена диаграмма для шварцшильдовской чёрной дыры (вспомним, что решение Шварцшильда - это то же, что решение Райснера-Нордстрёма при |Q| = 0). Если этой дыре добавить совсем небольшой заряд, то второй (внутренний) горизонт будет расположен непосредственно вблизи сингулярности. Для чёрной дыры с зарядом умеренной величины (М > |Q|) внутренний горизонт расположен дальше от сингулярности, а внешний уменьшил свою высоту над сингулярностью. При очень большом заряде (М = |Q|; в этом случае говорят о предельном решении Райснера-Нордстрёма) оба горизонта событий сливаются воедино. Наконец, когда заряд исключительно велик (М < |Q|), горизонты событий просто исчезают. Как видно из рис. 10.5, при отсутствии горизонтов сингулярность открывается прямо во внешнюю Вселенную. Удалённый наблюдатель может видеть эту сингулярность, а космонавт может влететь прямо в область сколь угодно сильно искривлённого пространства-времени, не пересекая никаких горизонтов событий. Подробный расчёт показывает, что непосредственно рядом с сингулярностью тяготение начинает действовать как отталкивание. Хотя чёрная дыра и притягивает к себе космонавта, пока тот находится достаточно далеко от неё, но стоит ему приблизиться к сингулярности на очень малое расстояние, и он подвергнется отталкиванию. Полной противоположностью случая решения Шварцшильда является область пространства непосредственно около сингулярности Райснера-Нордстрёма - это царство антигравитации.
РИС. 10.5. «Голая» сингулярность. Чёрную дыру, заряд которой чудовищно велик??? (M<|Q|), вообще не окружает горизонт событий. Вопреки «закону космической этики» сингулярность красуется на виду у всей внешней Вселенной.
Неожиданности решения Райснера-Нордстрёма не исчерпываются двумя горизонтами событий и гравитационным отталкиванием вблизи сингулярности. Вспоминая сделанный выше подробный анализ решения Шварцшильда, можно думать, что диаграммы типа изображенных на рис. 10.4 описывают далеко не всё стороны картины. Так, в геометрии Шварцшильда мы столкнулись с большими трудностями, вызванными наложением друг на друга в упрощённой диаграмме разных областей пространства-времени (см. рис. 9.9). Такие же трудности ждут нас и в диаграммах типа рис. 10.4, так что пора перейти к их выявлению и преодолению.
Легче понять глобальную структуру пространства-времени, применяя следующие элементарные правила. Выше мы разобрались, в чем состоит глобальная структура шварцшильдовской чёрной дыры. Соответствующая картина, именуемая диаграммой Пенроуза, изображена на рис. 9.18. Она может быть названа и диаграммой Пенроуза для частного случая чёрной дыры Райснера-Нордстрёма, когда заряд отсутствует (|Q| = 0). Более того, если мы лишим дыру Райснера-Нордстрёма заряда (т.е. перейдём к пределу |Q| -> 0), то наша диаграмма (какой бы она ни была) обязательно сведется в пределе к диаграмме Пенроуза для решения Шварцшильда. Отсюда следует наше первое правило: должна существовать другая Вселенная, противоположная нашей, достижение которой возможно лишь по запрещенным пространственноподобным линиям.
При построении диаграммы Пенроуза для заряженной чёрной дыры появляются основания ожидать существования множества Вселенных. У каждой из них должно быть пять типов бесконечностей (I– , F– , I0,F+, I+), рассмотренных в предыдущей главе. Кроме того, каждая из этих внешних Вселенных должна изображаться в виде треугольника, так как метод конформного отображения Пенроуза работает в данном случае как бригада маленьких бульдозеров (см. рис. 9.14 или 9.17), «сгребающих» всё пространство-время в один компактный треугольник. Поэтому нашим вторым правилом будет следующее: любая внешняя Вселенная должна представляться в виде треугольника, обладающего пятью типами бесконечностей. Такая внешняя Вселенная может быть ориентирована либо направо (как на рис. 10.6), либо налево.