Космические рубежи теории относительности
Шрифт:
Аналогично этому на упрощённой диаграмме (см. рис. 9.10) линии постоянного времени горизонтальны и имеют пространственноподобное направление. Например, некая конкретная пунктирная линия может означать момент «3 ч дня для всех точек пространства». Такая линия должна быть параллельна пространственной оси на упрощённой диаграмме, т.е. она должна быть горизонтальной.
На рис. 9.11, где изображена диаграмма Крускала-Секереша, пунктирные линии постоянного времени в общем имеют пространственноподобное направление, если взять их далеко от чёрной дыры, т.е. они там почти горизонтальны. Но внутри горизонта событий пунктирные линии постоянного времени направлены в общем снизу вверх, т.е. ориентированы во временноподобном направлении. Итак, под горизонтом событий линии постоянного времени имеют временноподобное направление! Следовательно, то, что обычно (во внешней Вселенной) связывается со временем, ведет себя внутри горизонта событий подобно расстоянию. При пересечении горизонта событий пространство и время меняются ролями.
В связи с обсуждением свойств пространства и времени важно отметить, что на диаграмме Крускала-Секереша (рис. 9.11) обе сингулярности (и в прошлом, и в будущем) ориентированы горизонтально. Обе
Тот факт, что шварцшильдовская сингулярность пространственноподобна, приведет к важным заключениям. Как и в частной теории относительности (см. рис. 1.9), здесь невозможно двигаться со сверхсветовой скоростью, так что пространственноподобные мировые линии в качестве «путей» движения запрещены. Двигаться по мировым линиям, обладающим наклоном более 45° к вертикальному (временноподобному) направлению, невозможно. Поэтому невозможно попасть из нашей Вселенной (на диаграмме Крускала-Секереша справа) в другую Вселенную (на этой же диаграмме слева). Любой путь, связывающий друг с другом обе Вселенные, должен хотя бы в одном месте быть пространственноподобным, а такие пути запрещены для движения. Кроме того, так как горизонт событий наклонен в точности под углом 45°, то астроном из нашей Вселенной, опустившийся под этот горизонт, никогда больше не сможет из - под него выйти. Например, если кто-нибудь проникнет в область II на рис. 9.9, то все допустимые временноподобные мировые линии приведут его прямо в сингулярность. Шварцшильдовская чёрная дыра - это ловушка без выхода.
Чтобы полнее почувствовать природу геометрии Крускала-Секереша, поучительно рассмотреть пространственноподобные срезы диаграммы пространства-времени, выполненные этими авторами. Это будут диаграммы вложения искривлённого пространства вблизи чёрной дыры. Такой метод получения срезов пространства-времени по пространственноподобным гиперповерхностям применялся нами и ранее (см. рис. 5.9, 5.10 и 5.11) и облегчил понимание свойств пространства в окрестностях Солнца.
РИС. 9.12. Диаграммы вложения для чёрной дыры. Чтобы построить диаграммы вложения, пространство-время Крускала-Секереша «режется ломтиками» по пяти характерным гиперповерхностям. Переходя от среза А (на раннем временном этапе) к срезу Д (на позднем этапе), можно видеть эволюцию возникающей при этом «кротовой норы».
На рис. 9.12 изображена диаграмма Крускала-Секереша, «нарезанная ломтиками» по характерным пространственноподобным гиперповерхностям. Срез А относится к раннему моменту времени. Первоначально две Вселенные, находящиеся вне чёрной дыры, никак не связаны между собой. На пути от одной Вселенной к другой пространственноподобный срез наталкивается на сингулярность. Поэтому диаграмма вложения для среза А описывает две раздельные Вселенные (изображенные в виде двух параллельных друг другу асимптотически плоских листов), в каждой из которых имеется сингулярность. Позднее при дальнейшей эволюции этих Вселенных сингулярности соединяются и возникает мостик, в котором сингулярностей уже нет. Это соответствует срезу Б, куда сингулярность не входит. С течением времени этот мостик, или «кротовая нора», расширяется и достигает наибольшего поперечника, равного двум шварцшильдовским радиусам (момент, соответствующий срезу В). Позднее мостик начинает снова стягиваться (срез Г) и наконец разрывается (срез Д), так что мы имеем снова две раздельные Вселенные. Такая эволюция кротовой норы (рис. 9.12) занимает менее 1/10000 с, если чёрная дыра имеет массу Солнца.
Обнаружение Крускалом и Секерешем подобной глобальной структуры пространства-времени у чёрной дыры явилось решающим прорывом на фронте теоретической астрофизики. Впервые удалось построить диаграммы, полностью изображающие все области пространства и времени. Но после 1960 г. были достигнуты и новые успехи, прежде всего Роджером Пенроузом. Хотя на диаграмме Крускала-Секереша и представлена вся история, эта диаграмма простирается вправо и влево бесконечно далеко. Например, наша Вселенная простирается на бесконечное расстояние вправо на диаграмме Крускала-Секереша, тогда как влево на той же диаграмме до бесконечности уходит пространство-время «другой» асимптотически плоской Вселенной, которая параллельна нашей. Пенроуз первым понял, насколько полезно и поучительно было бы пользоваться «картой», отображающей эти бесконечные просторы на какие-то конечные области, по которым было бы возможно точно судить о происходящем вдали от чёрной дыры. Чтобы осуществить эту идею, Пенроуз привлек так называемые методы конформного отображения, с помощью которых всё пространство-время, включая полностью и обе Вселенные, изображается на одной конечной диаграмме.
РИС. 9.13. Бесконечности. Наиболее удалённые «окраины» пространства-времени (бесконечности) делятся на пять типов. Временноподобная бесконечность прошлого (I– )-та область, откуда приходят все материальные тела, а временноподобная бесконечность будущего (I+)-та область, куда они все уходят. Световая бесконечность прошлого (F– )-та область, откуда приходят световые лучи, а световая бесконечность будущего - та область (F+), куда они уходят. Ничто (кроме тахионов) не может попасть в пространственноподобную бесконечность (I0).
Чтобы познакомить вас с методами Пенроуза, обратимся к обычному плоскому пространству-времени типа изображенного на рис. 9.2. Всё пространство-время там сосредоточено на правой стороне диаграммы просто потому, что невозможно оказаться на отрицательном расстоянии от произвольного начала. Вы можете находиться от него, скажем, в 2 м, но уж никак не в минус 2 м. Вернемся к рис. 9.2. Мировые линии Бори, Васи и Маши изображены там лишь на ограниченной области пространства-времени ввиду ограниченности размеров страницы. Если вам захочется посмотреть, где будут Боря, Вася и Маша через тысячу лет или где они были миллиард лет назад, вам понадобится намного больший лист бумаги. Гораздо удобнее было бы изобразить все эти далекие от точки «здесь и теперь» положения (события) на компактной, небольшой диаграмме.
Мы уже встречались с тем, что «самые удалённые» области пространства-времени именуются бесконечностями. Эти области крайне далеки от «здесь и теперь» в пространстве или во времени (последнее означает, что они могут находиться в очень далёком. будущем или очень далёком прошлом). Как видно из рис. 9.13, может быть пять типов бесконечностей. Прежде всего это I– – временноподобная бесконечность в прошлом. Она является тем «местом», откуда произошли все материальные объекты (Боря, Вася, Маша, Земля, галактики и всё прочее). Все такие объекты движутся по временноподобным мировым линиям и должны уйти в I+ – временноподобную бесконечность будущего, куда-то в миллиарды лет после «теперь». Кроме того, имеется I0 – пространственноподобная бесконечность, и так как ничто не может двигаться быстрее света, то ничто (кроме разве тахионов) не может никогда попасть в I0. Если быстрее света не движется никакой из известных физике объектов, то фотоны движутся в точности со скоростью света по мировым линиям, наклоненным на 45° на диаграмме пространства-времени. Это даёт возможность ввести F– – световую бесконечность прошлого, откуда приходят все световые лучи. Существует, наконец, и F+ – световая бесконечность будущего (куда уходят все световые лучи). Всякая удалённая область пространства-времени принадлежит одной из этих пяти бесконечностей; I– , F– , I0, F+, или I+.
РИС. 9.14. Конформное отображение по Пенроузу. Существует математический прием, при помощи которого удаётся «стянуть» наиболее удалённые окраины пространства-времени (все пять бесконечностей) во вполне обозримую конечную область.
Метод Пенроуза сводится к математическому приему стягивания всех этих бесконечностей на один и тот же лист бумаги. Преобразования, осуществляющие такое стягивание, действуют наподобие бульдозеров (см. образное представление этих преобразований на рис. 9.14), сгребающих наиболее удалённые участки пространства-времени туда, где их можно лучше рассмотреть. Результат такого преобразования представлен на рис. 9.15. Следует иметь в виду, что линии постоянного расстояния от произвольной точки отсчета в основном вертикальные и всегда указывают временноподобное направление. Линии постоянного времени в основном горизонтальные и всегда указывают пространственноподобное направление.
РИС. 9.15. Диаграмма Пенроуза для плоского пространства-времени. Всё пространство-время собрано внутрь треугольника с помощью способа конформного отображения, придуманного Пенроузом. Из пяти бесконечностей три (I– , I0, I+) сжаты до отдельных точек, а две - световые бесконечности F– и F+ стали прямыми линиями, имеющими наклон 45°.