Космические рубежи теории относительности
Шрифт:
Снимок
Расстояние от чёрной дыры
Фото А
Расстояние велико (много шварцшильдовских радиусов)
Фото Б
5 шварцшильдовских радиусов
Фото В
2 шварцшильдовских радиуса
Фото Г
На фотонной сфере (1,5 шварцшильдовского радиуса)
Фото Д
Прямо над горизонтом событий (чуть больше 1 шварцшильдовского радиуса)
На рис. 8.14 показано,
РИС. 8.14. Приближение космического корабля к чёрной дыре. Пять пар фотографий шварцшильдовской чёрной дыры сняты из указанных на рисунке точек.
РИС 8.15.
Фото А (вид издалека от чёрной дыры). Расстояние от чёрной дыры равно многим шварцшильдовским радиусам. Чёрная дыра выглядит отсюда как маленькое чёрное пятнышко в центре поля зрения носового иллюминатора.
Фото Б (вид с расстояния 5 шварщиильдовских радиусов). При взгляде с 5 шварщиильдовских радиусов угловой поперечник чёрной дыры составляет около 46°; она занимает центральную часть поля зрения носового иллюминатора. Дали Вселенной всё ещё видны в кормовой иллюминатор, хотя там уже заметны некоторые искажения.
Фото В (вид с расстояния 2 шварцшильдовских радиуса). При взгляде с 2 шварцшильдовских радиусов угловой поперечник чёрной дыры достигает 136°, и она закрывает большую часть поля зрения носового иллюминатора. Вид в кормовом иллюминаторе ещё более искажен, чем на фото Б.
Фото Г (вид с поверхности фотонной сферы). При взгляде с фотонной сферы (1,5 шварцшильдовского радиуса) чёрная дыра заполняет всё поле зрения носового иллюминатора, так что её угловой поперечник равен 180°. Вид назад также чрезвычайно искажен, особенно по краям поля зрения.
Фото Д (вид с высоты в несколько метров над горизонтом событий). Прямо над горизонтом событий носовой иллюминатор сплошь чёрный. Кажущиеся «края» чёрной дыры теперь заполняют со всех сторон кормовой иллюминатор. Видимая через него внешняя Вселенная сжалась теперь в небольшой кружок с центром в направлении от чёрной дыры.
На очень больших расстояниях от чёрной дыры сама дыра выглядела как маленькое пятно света в середине носового иллюминатора (рис. 8.15 А). Окружающее небо оставалось практически неискаженным, за одним важным исключением. Все звёзды во Вселенной посылают хоть немного света в окрестности фотонной сферы. Этот свет кружит вокруг чёрной дыры раз - другой или больше, а затем его траектория раскручивается спиралью навстречу космическому кораблю. Поэтому астроном, проводящий наблюдения через носовой иллюминатор, видит многократные изображения всех звёзд Вселенной, обрамляющие видимый «край» чёрной дыры. (Чтобы рис. 8.15, А - Д не получились перегруженными, все эти многократные изображения опущены.) Таким образом, вид неба около чёрной дыры будет весьма сложным
В 1975 г. Кэннингэм из Калифорнийского технологического института (США) провел ряд расчётов, которые помогли выяснить, как выглядит чёрная дыра, если глядеть на неё с разных расстояний. Рис. 8.15,Б показывает (на основании этих вычислений), что будет видно с расстояния в 5 шварцшильдовских радиусов. Так как космический корабль в этом случае находится вблизи чёрной дыры, она представляется большей, чем на рис. 8.15, А. На расстоянии в 5 шварцшильдовских радиусов (что соответствует расстоянию 150 км, если чёрная дыра имеет массу в 10 солнечных масс) угловой поперечник дыры равен примерно 56°. Вид же из кормового иллюминатора остаётся практически неискаженным.
С расстояния в 2 шварцшильдовских радиуса (60 км от чёрной дыры в 10 раз более массивной, чем Солнце) чёрная дыра - основной объект в небе перед космическим кораблем. Её угловой поперечник вырос уже до 136° (рис. 8.15, В). Всё видимое вокруг неё из носового иллюминатора небо чрезвычайно сильно искажено и заполнено многократными изображениями огромного количества звёзд и галактик. Даже из кормового иллюминатора небо наблюдается уже сильно искаженным.
С «высоты» фотонной сферы (45 км от чёрной дыры в 10 раз массивней Солнца) изображение чёрной дыры занимает всё поле зрения носового иллюминатора космического корабля, как видно на рис. 8.15, Г. По краям поля зрения кормового иллюминатора теперь видны бесчисленные многократные изображения.
По мере дальнейшего приближения космического корабля к горизонту событий чёрная дыра начинает просматриваться по краям поля зрения кормового иллюминатора. Вся внешняя Вселенная видна теперь как маленький кружок в центре кормового иллюминатора (рис. 8.15, Д). Размеры этого кружка определяются углом раствора конуса выхода, о котором мы упоминали выше. На самом горизонте событий (это примерно в 30 км от центра чёрной дыры в 10 раз более массивной, чем Солнце), где конус схлопывается, все звёзды неба собираются в одной точке в центре поля зрения кормового иллюминатора.
Вспомним, что наш космический корабль снабжен мощными ракетными двигателями, способными остановить его падение на разных расстояниях от чёрной дыры, так что астрономы могут не спеша вести свои наблюдения. Однако гравитационное поле чёрной дыры настолько мощное, что уже на расстоянии нескольких шварщиильдовских радиусов двигатели ракеты должны работать на полную мощность. Ещё задолго до того, как астрономы доберутся до точки, из которой они смогли бы сделать снимок Б, им придется испытать действие ускорения, составляющего тысячи g, которое буквально расплющит их о переборки корабля.
Чтобы избежать подобной участи, другие два астронома принимают решение совершить свободное падение на чёрную дыру до конца. Их космический корабль новейшей конструкции вообще лишен ракетных двигателей, которые замедляли бы его падение. Более того, чтобы избежать разрывающего действия приливных сил, произведена микроминиатюризация как космического корабля, так и самих космонавтов. Тем не менее они понимают, что и такая экспедиция равносильна самоубийству, ибо, попав под горизонт событий, они будут обречены упасть на сингулярность. Эти новые два астронома видят из иллюминаторов своего обреченного на гибель космического корабля совершенно иную картину. Однако, чтобы понять смысл этой картины, нам придется сначала рассмотреть вопрос о природе шварцшильдовской геометрии.