Космические рубежи теории относительности
Шрифт:
РИС. 8.3. Шварцшильдовская чёрная дыра. Простейшая идеальная чёрная дыра (незаряженная и невращающаяся) окружена фотонной сферой. Сферический горизонт событий представляет собою «поверхность» чёрной дыры. В центре дыры находится сингулярность.
Данные о структуре шварцшильдовской чёрной дыры подытожены на рис. 8.3. Прежде всего чёрную дыру окружает фотонная сфера, состоящая из лучей света, движущихся по неустойчивым круговым орбитам. Внутри фотонной сферы находится горизонт событий - односторонне пропускающая поверхность в пространстве-времени, из которой ничто не может вырваться. Наконец, в центре чёрной дыры находится сингулярность. Всё то, что проваливается сквозь горизонт событий, засасывается в сингулярность, где оно под действием бесконечно сильно искривлённого пространства-времени прекращает своё существование. На рис. 8.4 и 8.5 показаны соответственно зависимости между массой чёрной дыры и поперечниками её фотонной
РИС. 8.4. Размеры фотонной сферы. График показывает, как зависит диаметр фотонной сферы, окружающей шварцшильдовскую чёрную дыру, от её массы. Так, например, дыра с массой в 3 солнечные массы окружена фотонной сферой с поперечником около 26 км.
РИС. 8.5. Размеры горизонта событий. Поперечник горизонта событий, окружающего шварцшильдовскую чёрную дыру, зависит от её массы. Например, дыра с массой в 3 массы Солнца окружена горизонтом событий с поперечником около 18 км.
После того как умирающая звезда заходит за свою фотонную сферу и приближается к горизонту событий, от неё в окружающую Вселенную может вырваться все меньше и меньше световых лучей. Иллюстрированные на рис. 8.2 эффекты становятся всё более заметными. Подобный захват лучей света коллапсирующей звездой можно описать с помощью воображаемого конуса, показанного на рис. 8.6 и называемого конусом выхода. Навсегда уйти от звезды могут только те лучи, которые покидают её в пределах конуса выхода. Лучи же, идущие от поверхности звезды вне конуса выхода, отклоняются назад, к её поверхности.
РИС. 8.6. Конус выхода. С помощью этого воображаемого конуса удобно разделять световые лучи на способные покинуть звезду и на те лучи, которые она от себя не отпускает. Уйти в окружающую Вселенную удаётся только тем лучам, которые испущены с поверхности звезды под углами, заключенными во внутренней части конуса выхода.
По мере приближения катастрофического коллапса массивной звезды к его неизбежному концу, лучам света с поверхности звезды становится всё труднее и труднее уйти навсегда от звезды. Эти уходящие вовне лучи должны быть испущены внутри всё более сужающегося конуса с осью, направленной вдоль вертикали. Иными словами, по мере того как звезда подходит к своему горизонту событий, конус выхода схлопывается. Непосредственно над границей фотонной сферы конус выхода широко раскрыт. От звезды могут уйти лучи света, испущенные под любыми углами. Но когда звезда подходит к своему горизонту событий, конус выхода становится настолько узким, что все лучи света в конце концов заворачиваются назад, к поверхности звезды.
Поведение конуса выхода даёт первое важное указание на то, как должна выглядеть звезда, превращающаяся в чёрную дыру. По мере схлопывания конуса выхода от звезды уходит всё меньше и меньше света. Поэтому астроном, наблюдающий подобную звезду издалека, видит её всё более и более слабой. Фактически такое убывание яркости умирающей звезды происходит очень быстро. Рассмотрим, например, образование чёрной дыры из звезды с массой в 10 солнечных масс. Как показано на рис. 8.7, с приближением поверхности звезды к горизонту событий её яркость убывает с невероятной быстротой. Спустя всего 1/1000 с после начала гравитационного коллапса конус выхода становится настолько узким, что лишь одна квадрильонная (10– 15!) света звезды может ускользнуть во внешнюю Вселенную. Всего миг - и бывшая яркая звезда становится почти совершенно чёрной!
РИС. 8.7. Светимость коллапсирующей звезды. Сразу после начала конечного этапа коллапса звезда становится чрезвычайно слабой за очень короткий промежуток времени. График построен для звезды с массой 10 солнечных. Всего через 1/1000 с светимость звезды падает до 2% первоначальной, а спустя 1/100 с она составляет менее одной квадрильонной (10– 15) первоначальной.
Одновременно с быстрым ослаблением яркости умирающей звезды вступает в игру и другой важный эффект. Вспомним, что в гл. 5 упоминалось о том, что тяготение вызывает замедление течения времени. Этот эффект именуется гравитационным красным смещением, ибо свет, испускаемый атомами, погруженными в гравитационное поле, «смещается» в сторону более длинных волн. Поэтому в ходе усиления гравитационного поля вблизи звезды в процессе её коллапса свет, испускаемый атомами на поверхности этой звезды, испытывает всё большее и большее красное смещение. Поэтому для наблюдающего её со стороны астронома коллапсирующая звезда становится одновременно и слабой, и излучающей свет всё более длинных (более «красных») волн.
РИС. 8.8. Скорость тела при свободном падении. Удалённый наблюдатель видит, что свободное падение тела на чёрную дыру замедляется по мере
Замедление хода времени, которое почти невозможно заметить в слабом гравитационном поле Земли, становится в процессе образования чёрной дыры фактором фундаментальной важности. Ведь на самом горизонте событий течение времени полностью останавливается (рис. 8.8). При объяснении этого утверждения нужно быть очень осторожным. Проиллюстрируем ситуацию, вообразив, что мы бросили в чёрную дыру камень. Допустим, вы выпустили этот камень из рук, находясь очень далеко от чёрной дыры, где пространство-время почти плоское. Наблюдая движение камня, мы увидим, что по мере приближения к чёрной дыре он падает всё быстрее и быстрее. Если бы была верна ньютоновская теория, то наш камень продолжал бы увеличивать скорость, и в тот момент, когда он врезался бы в сингулярность, он двигался бы практически с бесконечной скоростью. Но в столь сильных гравитационных полях ньютоновская теория не может давать правильных ответов. Оказывается, когда камень подлетает к горизонту событий, начинает преобладать действие замедления времени. Вы обнаружите, к своему удивлению, что камень начинает падать всё медленнее и совсем останавливается на горизонте событий, потому что на этом горизонте для внешнего наблюдателя перестает течь время. Оставаясь вдалеке от чёрной дыры, мы должны прождать бесконечно долгий промежуток времени, чтобы увидеть, как камень пересечёт горизонт событий.
Итак, мы никогда не увидим такого события, как пересечение камнем горизонта событий. Тот, кто падает вместе с камнем, будет наблюдать совершенно иную картину. Свободно падающий наблюдатель не сможет заметить замедления времени. Если вы попробуете сказать ему, что его часы идут замедленно, он решительно возразит. Он сравнит свои часы со всеми часами в своем космическом корабле, проверит их по скорости распада радиоактивных изотопов и даже сверит их со своим пульсом. С точки зрения падающего наблюдателя, время продолжает у него идти так, как и раньше. Удалённый наблюдатель, находящийся в плоском пространстве-времени, объяснит эту странную ситуацию тем, что всё, наблюдаемое падающим наблюдателем, замедлилось в одной и той же пропорции, включая его пульс, его процессы мышления и темп, в котором он стареет. Согласно утверждению удалённого наблюдателя, космонавт, падающий на чёрную дыру, никогда не достигнет горизонта событий; он останется живым навсегда в преддверии вступления в чёрную дыру в состоянии замедленной жизнедеятельности, и ему потребуются многие миллиарды лет, чтобы преодолеть те несколько сантиметров, которые отделяют его от горизонта событий.
Однако, согласно данным падающего наблюдателя, его часы отсчитывают время в своем обычном темпе. Поэтому он проскакивает за горизонт событий спустя весьма краткий срок, если судить по его часам. Однако сразу после прохождения через горизонт событий он обнаруживает нечто неладное. Подобно тому как на горизонте событий остановилось время для внешнего наблюдателя, внутри горизонта оно меняется ролями с пространством. Вдали от чёрной дыры, скажем у нас на Земле, человек способен перемещаться в трёх пространственных измерениях (вверх и вниз, налево и направо, вперёд и назад). Однако во временном измерении мы бессильны «ходить» туда и обратно. Мы безостановочно идем вперёд во времени - от нашего рождения к старости и к смерти, хотим мы этого или нет. Внутри же горизонта событий роли пространства и времени меняются. Злосчастный космонавт, попавший под горизонт событий, начинает безостановочно увлекаться вперёд в пространстве навстречу сингулярности! Он бессилен избежать рокового столкновения с сингулярностью. На рис. 8.9 показано, сколько времени может, самое большее, пройти по часам космонавта между моментами пересечения горизонта и прихода в сингулярность. Что бы он ни предпринимал, даже имея в своем распоряжении наимощнейшие ракетные двигатели, он должен попасть в сингулярность спустя промежуток времени, не меньший, чем указано на этом графике. Например, пройдя под горизонт чёрной дыры с массой 6,5 солнечной массы, космонавт должен достигнуть сингулярности менее чем за 1/1000 с.
РИС. 8.9. Максимальное время падения с горизонта событий до сингулярности. Падающий наблюдатель, прошедший под горизонт событий, не может не попасть в сингулярность спустя промежуток времени, не меньший, указанного на графике.
Чтобы избежать путаницы, связанной с измерением времени, физики вводят два типа времени. Координатное время - это то время, которое измеряет наблюдатель, находящийся далеко от чёрной дыры (т.е. в плоском пространстве-времени). Собственное время– это то время, которое измеряет по своим часам свободно падающий наблюдатель. Времена эти разные. В координатном времени камню, брошенному в чёрную дыру, нужно лететь миллионы миллионов лет, чтобы приблизиться к горизонту событий. В собственном же времени, по часам, привязанным к падающему камню, последний уже через короткий промежуток времени пересечёт этот горизонт. На рис. 8.10 сопоставлены промежутки координатного и собственного времен, в течение которых тело падает на чёрную дыру с массой 10 солнечных масс с начального расстояния 90 км.