Куда течет река времени
Шрифт:
Большое давление на первый взгляд кажется крайне важным для объяснения взрыва Вселенной. Вспомним картину взрыва какого-либо заряда в малом объеме, например, химического (порох) или ядерного. Вещество заряда сильно нагревается, испаряется. И давление нагретых газов стремительно расширяет само вещество. Кажется, так же начала расширяться и Вселенная. Можно посчитать, что и здесь высокая температура и колоссальное давление стали причиной начала расширения Вселенной. Однако такое заключение оказалось бы неправильным. Между двумя этими явлениями имеется существенное различие.
При взрыве обычного заряда возникает перепад давлений — огромное давление внутри горячих газов и сравнительно малое атмосферное снаружи (если
Ничего подобного не было в начале расширения Вселенной. Ее вещество до образования небесных тел однородно, никаких перепадов плотности и давления не имелось, не возникало, значит, и силы, которая могла бы служить причиной начала расширения. Следовательно, большое давление горячего газа не являлось причиной начала расширения Вселенной. А что же послужило «первотолчком», давшим начальные скорости веществу?
Чтобы понять это, нам предстоит мысленно отправиться к самому «началу». А для этого познакомимся со свойствами материи при очень больших плотностях и температурах.
ПУТЕШЕСТВИЕ В НЕОБЫЧНЫЕ ГЛУБИНЫ
В нашем путешествии к истокам реки времени мы столкнемся с фактом, что чем ближе к сингулярности, тем выше температура Вселенной, а следовательно, больше энергия частиц материи. Какие процессы мы должны ожидать здесь, в мире гигантских энергий? Для того чтобы разобраться в этом, оставим на время космологию и отправимся в область бесконечно малого — в мир современной физики элементарных частиц.
Это наше путешествие будет очень кратким, и мы познакомимся в основном лишь с фактами, особенно важными для понимания процессов в ранней Все· ленной.
В физике элементарных частиц за последние два десятка лет произошел настоящий переворот. Стало ясно, что элементарные частицы, из которых состоит вещество, например такие, как протон и нейтрон, это вовсе не «кирпичики мироздания», а сложные системы, состоящие из еще более элементарных объектов — кварков. Было установлено существование целых классов новых частиц с совершенно необычными свойствами. Но, пожалуй, самое важное — это установление замечательного единства различных сил природы, которые еще недавно считались совсем несхожими по своей сути. Такое единство проявляется при очень больших энергиях и поэтому особенно важно для понимания начала расширения Вселенной.
Физика не впервые сталкивается с ситуацией, когда силы, совсем непохожие друг на друга, оказывались различными проявлениями более общей сущности. Такое случилось с электрическими и магнитными взаимодействиями. Люди были знакомы с проявлениями этих сил с незапамятных времен и думали, что магниты никак не воздействуют на электрические заряды и наоборот. Однако опытами А. Ампера, М. Фарадея и других было установлено, что движущиеся заряды создают магнитное поле, а движение магнита ведет к появлению электрических сил. Электромагнитная теория Дж. Максвелла через полвека объединила эти на первый взгляд разные взаимодействия в единую сущность — в электромагнитное поле. Таким образом, оказалось, что электромагнетизм един, и только в специальных условиях, когда нет движения, нет изменения полей
А. Эйнштейн вскоре после создания общей теории относительности начал титаническую работу, пытаясь объединить электромагнетизм и гравитацию — те два вида взаимодействий, которые тогда были известны. Эти попытки он продолжал всю жизнь. Однако в то время наука не была еще готова не только для успешного выполнения этой задачи, но даже для осмысления грандиозности и значимости этих попыток. Очень многие физики относились к попыткам А. Эйнштейна весьма скептически. Так, знаменитый физик В. Паули образно говорил по этому поводу: «Что разделено богом, человеку не соединить». Когда же позднее начались попытки объединения других сил природы, то они часто встречали такой же скептицизм.
Весной 1988 года в Триесте я спросил знаменитого пакистанского физика, директора Международного исследовательского центра А. Салама о первых попытках создания теорий, объединяющих различные силы. Он ответил, что лет тридцать назад в это почти никто не верил, и посоветовал прочитать письмо, которое ему написал В. Паули в 1957 году и которое А. Салам приводит в одной из своих статей. В этом письме говорится: «Не торопясь читаю Вашу статью. (Под ярким Солнцем на берегу Цюрихского озера.) Меня очень удивило ее название — «Универсальное взаимодействие Ферми»; это связано с тем, что с некоторых пор я придерживаюсь правила: если теоретик говорит «универсальный», то это означает чистую бессмыслицу».
С времен первых попыток А. Эйнштейна прошло много десятилетий, и ситуация в физике резко изменилась. В настоящее время известны четыре вида физических взаимодействий: гравитационные, слабые, электромагнитные и сильные.
До сих пор мы говорили главным образом о гравитационном взаимодействии, управляющем движением небесных тел, но в мире элементарных частиц им можно пренебречь. Несколько предварительных слов о трех других взаимодействиях.
Примером процесса, идущего за счет слабого взаимодействия, является распад свободного нейтрона nна протон р, электрон еи антинейтрино e. Мы видим существенное отличие проявления этого взаимодействия от рассмотренных нами проявлений гравитационного взаимодействия. Гравитация в том понимании медленных движений, о котором мы говорили, меняет только состояние движения частиц, слабое же взаимодействие меняет внутреннюю природу частиц: вместо нейтрона появляются протон, электрон и антинейтрино.
Сильные взаимодействия обусловливают различные ядерные реакции (такие, например, как термоядерные реакции), а также возникновение сил, связывающих нейтроны и протоны в ядра.
С электрическими и магнитными силами мы знакомы по школьным опытам, а поэтому они не нуждаются в комментариях.
Частицы, из которых состоит материя, делятся на группы в зависимости от свойств их взаимодействия.
Частицы, не участвующие в сильных взаимодействиях, называют лептонами. Таких частиц шесть. Это электрон e, мюон – , тау-лептон – и три сорта нейтрино: электронное eмюонное и тау-нейтрино . (Тау-нейтрино пока не открыто. Однако, по-видимому, никто не сомневается в его существовании. Мы в дальнейшем не будем делать оговорок об отдельной неполноте наших знаний.)