Чтение онлайн

на главную - закладки

Жанры

Куда течет река времени
Шрифт:

Напомним, что эти строки были написаны за десять лет до создания специальной теории относительности. Далее герой Г. Уэллса утверждает, что разные изображения в нашем трехмерном пространстве помогают изучить четвертое измерение. «Например, вот портрет человека, когда ему было восемь лет, другой — когда ему было пятнадцать, третий — семнадцать, четвертый — двадцать три года и так далее. Все это, очевидно, трехмерные представления его четырехмерного существования, которое является вполне определенной и неизменной величиной в пространстве и времени».

Мы видим, что в этом описании история представляется как бы уже готовой, полностью записанной на ленту, как и у Лапласа. Вдоль этой записи можно скользить и вперед и назад. Герой повести говорит, что все дело в том, чтобы научиться

скользить по времени вперед и назад так же легко, как мы это делаем в пространстве. Он подчеркивает, что и в пространстве мы не с одинаковой легкостью можем двигаться по всем направлениям. Так, совсем недавно человек не мог подниматься над поверхностью Земли на значительную высоту. Да и вообще он с гораздо большей легкостью двигается вниз, подчиняясь силе тяготения, чем вверх. Однако, говорит путешественник по времени, человек «вопреки силе тяготения может подняться вверх на воздушном шаре. Почему же ему не надеяться, что в конце концов он будет способен также остановить или ускорить свое движение по времени или даже направить свой путь в противоположную сторону?»

Конечно, повесть Г. Уэллса — это художественное произведение, посвященное социальным проблемам будущего и являющееся в какой-то степени, наверное, своеобразным предупреждением, демонстрирующим, как может деградировать человеческое общество, если будет разделено на антагонистические классы. Но он был великим художником, способным глубоко продумывать и научные детали, принципы, законы. Поэтому так ярко и запоминающе описаны им мечты о полетах во времени.

Не вернемся от этих мечтаний к науке второй половины XX века. Что можно с научной точки зрения сказать о возможности «полетов» в прошлое?

Прежде всего, сразу надо отметить, что представлять себе такое перемещение вспять по времени, как прокручивание кинокартины в обратном направлении «перед человеком, неподвижно сидящим в кресле», заведомо неверно. Мы увидим далее, что для перемещений по времени необходимо двигаться и в пространстве. Заметим также, что ни при каком «полете» по времени сами мы не может помолодеть. В каждом из нас, как и в любом другом человеке или какой-либо системе, время может течь только вперед, только от молодости к старости. Нам известен закон роста беспорядка, увеличения энтропии, а это и определяет старение организма. (Оговоримся здесь все же, что можно вообразить пока чисто фантастическую ситуацию, когда вмешательство извне в процессы в человеческом организме на уровне живой клетки может предотвратить старение и даже вернуть молодость, но это вопрос о регулировке жизненных процессов, а не о беге времени.) Направление «психологической стрелы времени», как мы знаем, совпадает с этой «термодинамической стрелой времени». Но можно представить, что человек с помощью специально сконструированной машины попадает в некий «тоннель», проходя который он движется вспять по отношению ко времени во внешнем пространстве и, выходя через другое отверстие этого «тоннеля», он попадает в прошлое. Сам путешественник в прошлое при этом, разумеется, вовсе не становится более молодым. Однако, попав в прошлое, он может, например, оказаться во времени своей юности или даже в эпохе до момента своего рождения!

Такое путешествие выглядит в некотором смысле как отделение небольшой части потока воды от могучей реки и перекачивание ее насосами по трубам вдоль берега в направлении противоположном основному потоку, а затем сбрасывание этой воды в реку далеко вверху по течению.

Нечто подобное такой картинке, только относящееся к реке времени, и рассматривается современной наукой как теоретическая возможность. Чтобы не рассердить слишком сильно моих коллег-физиков, которым кто-нибудь из читателей может рассказать, о чем я здесь написал, оговорюсь сразу, что некоторые из них (коллег) считают любое путешествие в прошлое решительно невозможным. Но к этим спорам мы еще вернемся.

Чистые теоретики, скорее даже математики, чем физики, уже давно в своих трудах рассматривали причудливые фантастические миры, в которых путешествие в прошлое возможно. Эти миры порождены решением систем уравнений общей теории относительности. По-видимому, все тогда считали, что эти решения не

имеют ни малейшего отношения к действительности, хотя и интересны для исследования структуры самой теории. Тот факт, что формулы правильной теории могут давать неправильные — «физически бессмысленные» — результаты, знает, конечно, каждый из своего опыта знакомства со школьной арифметикой. Достаточно поставить в условие задачи неправильные числа, как «правильная» арифметика выдаст невероятный результат: скажем, чтобы вырыть котлован объемом 30 кубических метров за 4 дня при производительности труда равной 3 кубометрам на одного землекопа в день, необходимо… 2,5 землекопа. Подобные «ответы» доводили до слез не одного ребенка. Большинство физиков относило миры с причудливыми свойствами времени к подобным «ответам».

Специалисты все же терпеливо изучали курьезные решения уравнений теории, хотя полностью сознавали их нереальность. Ведь любопытно знать, как могут быть устроены такие вселенные, в которых имеются «петли времени» и можно оказаться в своем прошлом.

Одно из первых решений такого рода было получено К. Геделем в 1949 году. В нем рассматривалась стационарная неменяющаяся со временем Вселенная. Уже поэтому модель не могла отвечать действительности, ибо мы наблюдали разбегание галактик. Вселенная Геделя наполнена однородным веществом с довольно странными свойствами, и, самое важное — она вращается. В такой Вселенной расстояния между всеми частицами вещества неизменны. Если мы прикрепим к каждой частице совершенно одинаковые часы, то как бы мы ни сверяли их друг с другом, чтобы «одновременно» запустить для отсчета времени, это сделать не удастся: нет для этого вещества и связанных с ним часов понятия «одновременно».

В общем, получается весьма экзотическая модель фантастической Вселенной. В этой Вселенной есть, как принято говорить, «петли времени». Из любой ее точки можно отправиться по определенному пути так, что, идя с некоторой скоростью вперед и вперед, обходишь мир и возвращаешься в эту исходную точку точно в момент начала путешествия! Иначе говоря, путешественник огибает этот мир не только в пространстве, но и во времени.

Все это выглядело забавно. Словом, решение было настоящей для теоретиков математической игрушкой. Но и не более. Можно было относиться к существованию «петель времени» в решении К. Геделя как к смешному курьезу, подобному двум с половиной землекопам в рассмотренной выше арифметической задаче.

На решение Геделя обратил мое внимание А. Зельманов, когда я был еще студентом. Сам он использовал это решение как математический пример при доказательстве серьезной теоремы. Я же развлекался, исследуя забавные свойства кривых линий в этой Вселенной.

Теоретики «игрались» и с другими моделями, в которых есть «петли времени».

Одну из таких моделей мы с Я. Зельдовичем рассмотрели в нашей вполне серьезной (более семисот страниц) монографии «Строение и эволюция Вселенной». Эта модель очень поучительна, и я о ней здесь коротко расскажу, надеясь, что в результате вам станет чуть яснее, что имеется в виду, когда говорят о «петлях времени».

Мы уже изображали на картинках в этой книге пространство-время: по горизонтали откладывали пространственное направление, по вертикали — время. Поступим так и сейчас. Берем листок бумаги (на нем рисунок 14а), изгибаем его, как показано на рисунке 14б, и склеиваем верх рисунка с низом. Получается цилиндр (рисунок 14в), в котором окружности, его образующие, являются «петлями времени» (цилиндр следует считать бесконечно длинным). Скользя вместе с потоком времени по окружности цилиндра, возвращаемся к исходному моменту в прошлом. Можно, конечно, не возвращаться точно к исходному событию. Для этого достаточно перемещаться с течением времени вправо по пространству. Жизненный путь такого путешественника изобразится спиралью (рисунок 14г), она может быть все длиннее и длиннее «по времени» без постоянного кружения по одному и тому же временному пути, как это было при эволюции по «петле времени» на предыдущем рисунке.

Поделиться:
Популярные книги

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Школа Семи Камней

Жгулёв Пётр Николаевич
10. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Школа Семи Камней

Кодекс Охотника. Книга XXVI

Винокуров Юрий
26. Кодекс Охотника
Фантастика:
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXVI

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Машенька и опер Медведев

Рам Янка
1. Накосячившие опера
Любовные романы:
современные любовные романы
6.40
рейтинг книги
Машенька и опер Медведев

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Возвращение

Жгулёв Пётр Николаевич
5. Real-Rpg
Фантастика:
боевая фантастика
рпг
альтернативная история
6.80
рейтинг книги
Возвращение

Идущий в тени 8

Амврелий Марк
8. Идущий в тени
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Идущий в тени 8

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Заставь меня остановиться 2

Юнина Наталья
2. Заставь меня остановиться
Любовные романы:
современные любовные романы
6.29
рейтинг книги
Заставь меня остановиться 2