Чтение онлайн

на главную

Жанры

Курс «Инженер по расчету и выбору регулирующей арматуры»
Шрифт:

Джон Монсен, доктор философии, президент Валин Корпорейшн.

Определение размеров клапана и применение регулирующей арматуры всегда шли рука об руку. Однако, инструменты, доступные для пользователей клапанов, изменились и значительно улучшились со временем. В прошлом, расчеты размеров клапанов выполнялись со специально разработанными логарифмическими линейками. Некоторые из этих логарифмических линеек все еще актуальны сегодня и датируются концом 1930-х годов, до того, как была представлена концепция Сv. Отрасль постепенно адаптировалась с внедрением новых технологий. Примерно в 1978 году несколько производителей клапанов предлагали программы для программируемых калькуляторов HP97, многие из которых включали в себя вычисления шума.

После того как появился персональный компьютер (ПК) Хьюлетт Паккард, несколько производителей арматуры начали предлагать программы подбора размеров для

ПК. Сначала они были рудиментарными, требующими, чтобы пользователь вводил конкретные параметры клапана, такие как FL и xT, и как только была рассчитана Сv пользователь должен был искать значение Сv в таблице производителя для определения того, какой клапан будет работать при допустимых степенях хода клапана. Как только это было определено, значения FL и xT, обычно должны были быть отрегулированы вручную. Кроме того, поправки к Сv и FL или xT для эффекта редуцирующих устройств труб часто отсутствовали или были неправильно реализованы. Так как формула для поправки Сv и FL и xT для эффекта трубных редуцирующих устройств, содержащих Сv, количество расчетов для нахождения решений было большим и трудоемким, поскольку необходимо было делать итеративные расчёты. Это был трудоемкий процесс с тогда еще очень медленными компьютерами.

Сегодня программное обеспечение для регулирующих клапанов от большинства производителей достаточно развито, и программы включают в себя все необходимые параметры клапана. Это сводит процесс определения размера регулирующего клапана только к одному- двум шагам и очень комфортно для конечного пользователя.

Некоторые ПО подбора размеров арматуры даже дают рекомендации насчет того, какой размер клапана будет лучше. Недостатком того, что все параметры находятся в программном обеспечении, является то, что большинство производителей может эффективно рассчитывать только свои собственные клапаны, хотя некоторые производители предоставляют программное обеспечение, содержащее данные для самых распространенных клапанов.

Возможно, самый новый и мощный инструмент, включённый в пакет программного обеспечения по определению размеров регулирующей арматуры – это возможность графического отображения обеих установленных характеристик потока (пропускной и расходной характеристик) и установленного усиления конкретной арматуры в системе, в которую она должна быть установлена.

На рисунке 1.1. показан установленный расход и коэффициент усиления двух размеров сегментного шарового клапана в предлагаемой системе с большим количеством труб и центробежным насосом. Это означает, что, если изменяется ход клапана и расход, падение давления в регулирующей арматуре также меняется.

Рис. 1.1. Установленная характеристика расхода и усиление двух сегментных шаровых кранов в системе со значительным количеством труб и центробежным насосом

Программа изображает две вертикальные линии на графике установленной характеристики для представления указанного минимального и максимального потока совпадет с графиком характеристики арматуры.

Что касается 6-дюймового клапана, есть много потраченной пропускной способности выше максимального потока 550 галлонов в минуту, который дорогостоящ и не нужен. Также не так уж и велик коэффициент безопасности на нижнем участке хода клапана. 3-дюймовый клапан использует более значительную часть своего общего диапазона хода и минимальный и максимальный указанные потоки симметрично размещены на установленной характеристике потока клапана. С 3-дюймовым клапаном, есть примерно такое же количество коэффициента безопасности на каждом конце указанного диапазона управления.

Реальную оценку того, как хорошо клапан будет контролировать процесс, можно найти в установленном графике усиления. Масштабирование оси 'x' находится в единицах q/qm, где q – фактический расход, а 'qm' – максимальный заданный расход. В пределах указанного диапазона расхода от 80 до 550 галлонов в минуту (между двумя вертикальными линиями), коэффициент усиления 6-дюймового клапана сильно меняется. Чем больше меняется усиление, тем труднее будет найти один хороший набор настроек регулятора, которые дадут и надежный контроль и стабильную работу на всем диапазоне расхода. Примерно на 70% от максимального указанного расхода, установленное усиление достигает около 3,5. Ошибочное 1% положение приведет к ошибке потока в 3,5 %, поэтому, в идеале коэффициент усиления должен быть максимально приближен к 1,0, чтобы сделать поток менее чувствительным к ошибкам положения. Установленный коэффициент усиления 3-дюймового клапана гораздо более постоянен, чем 6-дюймового клапана и ближе к идеальному значению 1,0. Это делает более легкой настройку контура для быстрого, но стабильного управления во всем заданном диапазоне расхода. Пиковое значение 2 означает, что ошибочное положение с погрешностью в 1% приведет к погрешности потока в 2%, по сравнению с 3,5% погрешностью 6-дюймового клапана.

Правильный выбор размеров приводов поворотных регулирующих клапанов необходим для обеспечения точного контроля и того, чтобы клапан плотно закрывался, когда это необходимо. Приводы больших размеров могут стоить дорого, добавить ненужный вес для сборки регулирующей арматуры и не реагировать так быстро на изменения в управляющих сигналах, как сделали бы это правильно подобранные приводы. Приводы меньшего размера, в лучшем случае, не смогут точно контролировать арматуру, переместить клапан под высокой нагрузкой процесса или прекратить процесс, когда клапан закрыт.

Существуют четыре наиболее распространенных типа механизмов для преобразования линейного движения во вращательное – это реечно-зубчатый механизм, шарнирный коленчатый вал, треугольный шатун и шарнирно-сочленённый кривошип, изображенные на рис. 1.2.

Рис. 1.2. Механизмы преобразования движения пневматического поворотного привода, их крутящие моменты и требования к крутящим моментам шарового крана и затворного клапана

Хотя пружинно-возвратные приводы наиболее популярны для управления, начиная с приводов двойного действия легче понять относительные преимущества каждого из них и то, как работают их механизмы преобразования. Версии с возвратной пружиной имеют одинаковый крутящий момент по сравнению с характеристикой положения, за исключением их крутящего момента по отношению к положению искажено наличием пружины.

Механизм преобразования движения рейки и зубьев шестерни привода следующий: зубья передаточного механизма, прикрепленные к поршням, поворачивают передаточный механизм (шестерню). Расстояние между плечом момента и зубчатой рейкой с центром шестерни остаётся постоянным, поэтому крутящий момент остается постоянным на всех градусах открытия (см. оранжевую линию на рис. 1.2). В шарнирном кривошипном механизме соединение на поршне зафиксировано и свободно вращается. Это означает, что в начале и в конце вращения, плечо момента короче, чем в середине хода, поэтому кривая крутящего момента на выходе самая низкая в начале и конце вращения и достигает центра хода (см. синюю/зелёную линии на рис. 1.2). Для треугольного шатуна, стержень, прикрепленный к поршню ограничен в движении по прямой, это означает, что плечо момента самое длинное в начале и конце хода, и самый короткий в середине хода, когда поршень движется вниз и соединение с плечом кривошипа скользит в паз в сторону вращающегося вала (см. розовую линию на рис. 1.2). Для сравнения, геометрия шарнирного рычага является сложной и образует сложную кривую вращательного момента (см. голубую линию на рис.1.2).

В каждом случае преобразования механизмов на рисунке 1.2, кривые крутящего момента проецируются на расчетный или номинальный крутящий момент в 1,0 на графике. Требуемый крутящий момент для типичного высокопроизводительного дискового затвора самый большой тогда, когда диск выходит или входит на седло. Требования к крутящему моменту значительно снижаются, когда диск освободит седло. Динамический крутящий момент, вызванный взаимодействием потока с пиками диска, составляет около 800. Максимальный требуемый крутящий момент обычно заявляется на 90% от расчетного крутящего момента привода, так как обычно приводы выбраны с коэффициентом запаса (безопасности) не менее 10%. Расчетные крутящие моменты привода и требования к крутящему моменту арматуры обычно консервативны. Только небольшой фактор безопасности необходим, особенно для запорной арматуры, где основное соображение заключается в том, что клапан входит и выходит из седла. Требования крутящего момента шарового крана такие же, что и дискового затвора. При посадке и выхода из седла, шаровой кран имеет несколько градусов "мертвого угла". Это место, где шар поворачивается, но проточная часть в шаре полностью закрыта седлом, перекрывающим поток, так что полное давление отключения – это вдавливание шара в седло. Также важно обратить внимание, что крутящий момент шарового крана не падает так низко, как у дискового затвора, потому что шар всегда находится в контакте с седлом.

Поделиться:
Популярные книги

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Возвращение

Кораблев Родион
5. Другая сторона
Фантастика:
боевая фантастика
6.23
рейтинг книги
Возвращение

Табу на вожделение. Мечта профессора

Сладкова Людмила Викторовна
4. Яд первой любви
Любовные романы:
современные любовные романы
5.58
рейтинг книги
Табу на вожделение. Мечта профессора

Титан империи 6

Артемов Александр Александрович
6. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 6

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна

Неестественный отбор.Трилогия

Грант Эдгар
Неестественный отбор
Детективы:
триллеры
6.40
рейтинг книги
Неестественный отбор.Трилогия

Враг из прошлого тысячелетия

Еслер Андрей
4. Соприкосновение миров
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Враг из прошлого тысячелетия

Идущий в тени 3

Амврелий Марк
3. Идущий в тени
Фантастика:
боевая фантастика
6.36
рейтинг книги
Идущий в тени 3

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага