Курс «Инженер по расчету и выбору регулирующей арматуры»
Шрифт:
На рисунке 1.8. представлена типичная реакция арматуры на ступенчатое воздействие в заданной точке.
Рис. 1.8. Типичная реакция регулирующей арматуры на ступенчатое воздействие управляющего сигнала
При ступенчатом воздействии будет некоторый "простой" (Td, от англ. dead time), прежде чем будет произведено движение рабочего органа арматуры. При этом может возникать перерегулирование.
В
T63 был выбран как эквивалент постоянной времени системы первого порядка. Термин «постоянная времени» не использовался, потому что реакция регулирующей арматуры редко бывает первого порядка. Реакция первого порядка с T86 (две постоянные времени) и временем установления, аналогично T86 и времени установления отклика арматуры, нужны для того, чтобы определить, что реакция арматуры не первого порядка.
ISAS75.25.01, «Процедура измерения реакции регулирующей арматуры ступенчатое воздействие» теперь использует один параметр – T86, что соответствует двум постоянным времени системы первого порядка. Обратите внимание, что T86 измеряется от времени изменения шага в управляющем сигнале.
Скорость реакции регулирующей арматуры также является проблемой. На рисунках 1.9. и 1.10 показан отклик системы первого порядка, которая имеет постоянную времени равную 10 секунд, то есть процесс, который реагирует на протяжении 63% полной реакции за 10 секунд.
Рис. 1.9. Реакция процесса с 10-секундной постоянной времени при управлении значением 10-секундной постоянной времени
Рис. 1.10. Реакция процесса с 10-секундной постоянной времени
при управлении значением 1-секундной постоянной времени
Хотя реакция регулирующей арматуры обычно более сложная, чем первого порядка, допустимо, для сравнения эффекта арматуры с различными скоростями, рассматривать их как системы первого порядка. Если бы 10-секундная система контролировалась арматурой с 10-секундной постоянной времени, общий отклик будет выглядеть так, как показано на рисунке 1.9. Объединенный отклик намного медленнее, чем то, на что способен сам процесс. Когда тот же 10-секундный процесс управляется арматурой с постоянной времени в 1 секунду, как показано на рисунке 6, объединенный отклик почти так же быстр, как скорость, с которой бы процесс мог реагировать с бесконечно быстрой арматурой. Как правило, арматура, которая в пять раз быстрее, чем сам процесс, будет иметь небольшой эффект в замедлении процесса реагирования настолько быстро, насколько это возможно.
Ниже приведены некоторые рекомендации для арматуры в процессах, где требуется очень хорошее управление:
1. Разрешение (Сцепление/ трение покоя): <= 0,5%
2. Мертвая зона: <= 0,5%
3. Скорость реакции:
А) Быстрые контуры:
1. Td арматуры <= 20% от требуемой постоянной времени процесса с обратной связью
2. T86 арматуры <= 40% от требуемой постоянной времени процесса с обратной связью (это эквивалентно тому, что арматура должна быть в пять раз быстрее желаемого времени реакции процесса с обратной связью.)
3. Время установления арматуры <= чем желаемая требуемая постоянная времени процесса с обратной связью
Б) Медленные
4. Ступенчатое перерегулирование: максимум 20%.
Поскольку арматура достигает 86 % от ее общей реакции за 2 секунды, и желаемая реакция процесса должна достичь 86 % от ее общей реакции за 10 секунд, это равносильно тому, что арматура в пять раз быстрее, чем желаемое время реакции процесса.
20% перерегулирования означает 20% размера шага. Например, перерегулирование на 10% не должно превышать 2% шкалы. Рекомендации для T86 соответствует с предложениями в техническом отчете арматуры ISA – TR75.25.02.
На рисунке 1.11 продемонстрировано, почему критерии скорости реакции имеют смысл.
Рис. 1.11. Реакция арматуры в сравнении с требованиями процесса
Это та же арматура, которая обсуждалась ранее, и она соответствует вышеуказанным рекомендациям для процесса, где желаемая постоянная времени обратной связи составляет 5 секунд.
Простой, который чуть ниже рекомендуемых 20% от желаемой постоянной времени обратной связи, означает, что он закончился вовремя, чтобы иметь небольшое влияние на общую реакцию процесса.
Арматура достигает 86% своего полного хода только после 40% от желаемой постоянной времени обратной связи. Можно увидеть, что арматура намного впереди, когда процесс должен достичь 63% от его окончательного значения, и даже дальше, когда процесс должен достичь значения своих двух постоянных времени (86%). Так как арматура достигает 86% своей полной реакции в течение 2 секунд, и желаемый отклик процесса должен достичь 86% от общей реакции за 10 секунд, это эквивалентно тому, что арматура в пять раз быстрее, чем требуемое время отклика процесса.
На ранней стадии полного отклика небольшое перерегулирование будет способствовать незначительно, если и будет, перерегулированию процесса. Реакция арматуры установилась до своего окончательного значения после чуть меньше одной желаемой постоянной времени процесса, задолго до того, как процесс, как ожидается, достигнет своего окончательного значения.
То, что нужно запомнить:
– арматура большего размера затруднит точное регулирование расхода.
– регулирующая арматура с неправильной действительной пропускной характеристикой приведет к нелинейной установленной пропускной характеристике и затруднит или сделает невозможным подбор настроек ПИД-регулятора, которые дадут быстрое и стабильное управление на протяжении требуемого диапазона расхода.
– предельный цикл, скорее всего, вызван арматурой, которая имеет чрезмерное усилие страгивания из-за статического трения (сцепления и трения покоя) и нуждается в ремонте или замене.
1.3. Кавитация и прогнозирование кавитационных повреждений в регулирующей арматуре
Дросселированный поток жидкости в регулирующих клапанах приводит либо к вскипанию, либо, что чаще, к кавитации. Классический подход к объяснению дросселированного потока заключается в следующем. Если предположить, что поток увеличивается линейно с квадратным корнем перепада давления, P до тех пор, пока P достигает перепада дросселированного давления, Pдроссел., и тут же становится полностью дросселированным без дальнейшего увеличения расхода. (См. пунктирные линии на Рис. 1.12). Термин, используемый здесь для разделительной линии между недросселированным потоком и дросселированным потоком (Pдроссел.), – это терминология, используемая в версии 2012 года (Стандарт стабилизации определения размера регулирующей арматуры Международного общества автоматизации (ISA)). До этого, не было определения разделяющей линии, так что производители арматуры придумывали свои названия.