Курс «Инженер по расчету и выбору регулирующей арматуры»
Шрифт:
Есть ряд вещей, которые могут вызвать чрезмерную переменность процесса, включая следующие:
– Состав поступающего сырья
– Состав входящих компонентов
– Технологическое оборудование
– Управление процессом проектирования
– Неадекватное смешивание / перемешивание
– Неэффективная настройка контуров управления
– Неправильно выбранные или плохо работающие регулирующие арматуры.
Конечные пользователи обеспокоены всеми пунктами этого списка, но для нашего обсуждения будет рассмотрен последний.
Примерно в половине случаев существует проблема колебательности, это
– Имеет пропускную способность, соответствующую процессу
– Правильного размера
– Имеет хорошие статические и динамические характеристики.
Важно выбрать арматуру с действительными характеристиками, которые соответствует процессу и правильно подобрать размер (номинальный диаметр) арматуры. Неправильно выбранная действительная пропускная характеристика приведет к нелинейной установленной расходной характеристике в трубопроводе. Результатом будет система, которую будет сложно или невозможно настроить для быстрого и стабильного отклика во всем требуемом диапазоне расхода. С другой стороны, правильно выбранная действительная пропускная характеристика даст линейную или почти линейную установленную пропускную характеристику, облегчая настройку системы для быстрого и стабильного отклика во всем требуемом диапазоне расхода.
Кроме того, регулирующие клапаны с большими номинальными диаметрами по сравнению с расчетными, имеют проблемы с точным корректированием потока до желаемой скорости. Предположим, что два клапана имеют одинаковое применение. В этом случае арматура правильного размера сможет регулировать расход с меньшими приращениями (по сравнению с габаритной арматурой) и, следовательно, сможет контролировать расход точнее.
Работа регулирующей арматуры также оказывает значительное влияние на переменность процесса. Самыми важными мерами производительности являются разрешение (или чувствительность), мертвая зона и скорость реакции.
Пример типичного теста мертвой зоны и разрешения показан на рисунке 1.5. «Трущееся» поведение арматуры часто воспринимается как плохая страгиваемость и определяется трением покоя. Это результат взаимодействия между трением в статике и динамическим трением. Статическое трение обычно намного выше, чем динамическое трение.
Рис.1.5. Типичный результат теста статической мертвой зоны и разрешения
В результате арматура держится на месте, пока приводом не будет создано достаточное усилие, чтобы преодолеть статическое трение, затем арматура быстро перемещается в другое положение. Разрешение (шаг) является мерой наименьшего движения, на которое способна арматура, двигаясь в одном направлении. Это называется статическим тестом, потому что всегда нужно ждать достаточно долго после каждого шага для любого возможного движения. Измерения не снимаются во время движения арматуры, но записывается только статическое положение арматуры после того, как она остановилась.
Сигнал управления представлен в виде ступени в одном направлении с очень маленькими ступеньками. После каждого шага есть период ожидания, чтобы убедиться, что у арматуры есть время сделать какое-либо движение, которое она собирается сделать перед началом следующего шага. Наблюдая за количеством шагов управляющего сигнала, которые необходимы, чтобы сделать движение, можно заметить, насколько чувствительна арматура,
После нескольких шагов в одном направлении, направление шагов меняется. Наблюдая за количеством шагов, которое требуется для инициирования, реверсирование движения арматуры определяет, что такое мертвая зона.
В этом примере размер шага составляет 1/4 %. В том же направлении эта арматура реагирует на каждый 1/4 % шаг, поэтому он имеет чувствительность или «разрешение» не менее 1/4 %. Это занимает два шага 1/4 % после смены направления для того, чтобы арматура начала двигаться в обратном направлении, так что эта арматура имеет мертвую зону не более чем 1/2 %. Мертвая зона обнаруживается в процессе как простой, который дестабилизирует управление. Обратите внимание, что шкалы входа и положения различны, так что два графика будут легче отличаться друг от друга.
На рисунке 1.6. показаны результаты теста для очень «трущейся» регулирующей арматуры.
Рис.1.6. Статическая мертвая зона и разрешение арматуры с чрезмерным статическим трением
Результат чрезмерного трения в замкнутом контуре системы это предельный контур и переменность процесса (см. рис. 1.7.) с примером предельного контура.
Рис.1.7. Предельный цикл
Обратим внимание на контур переменного процесса на рисунке 1.7. и горизонтальную линию, которая была проведена над контуром переменного процесса в левой части графика. Арматура остаётся на одном уровне, а переменная процесса выше заданного значения. Интегральное (или сбросное) действие ПИ (пропорционально- интегрального) регулятора наращивает выход контроллера в попытке исправить ошибку до тех пор, пока в приводе не будет достаточно давления, чтобы преодолеть статическое трение. Это связано с тем, что динамическое трение ниже, чем статическое трение, и арматура быстро перемещается в новое положение. До того, как статическое трение преодолено, в приводе создалось достаточно давления, чтобы арматура перекрыла заданное положение, и новое значение переменной процесса теперь ниже заданного значения. В результате, действие сброса ПИ регулятора начинает линейно изменять выход контроллера в противоположном направлении в попытке исправить новую ошибку, но арматура снова остается в том же положении и не двигается, пока в приводе не будет создано достаточно давления для преодоления статического трения. Результатом является «Предельный цикл».
Характерной чертой предельного цикла является то, что переменная процесса способна колебаться в приближенной «квадратной» форме волны, а выходной сигнал контроллера колеблется в виде волны формы «зубьев пилы». Настройка контура изменит период предельного цикла, но не устранит его. Единственным решением для предельного цикла, вызванного регулирующей арматурой, является ремонт или замена арматуры.
Еще одной важной мерой качества регулирования и совершенства регулирующей арматуры является скорость реакции на шаг изменения в управляющем сигнале. Это «динамический» тест, так как он определяет, что арматура делает, пока она движется, и все движение записывается.