Курс теоретической астрофизики
Шрифт:
Возбуждение ионов в короне может происходить в результате ионизаций и последующих рекомбинаций. Однако, как показывают подсчёты, более эффективным механизмом возбуждения является электронный удар. Следует иметь в виду, что при температуре порядка миллиона кельвинов средняя энергия свободного электрона порядка 100 эВ. Поэтому практически каждый свободный электрон может при столкновении возбудить такие ионы, как указанные выше ионы железа.
Задавая определённый химический состав короны, мы можем рассчитать её ультрафиолетовый спектр. Вычисления показали, что этот спектр должен быть весьма богат эмиссионными линиями. Вместе с тем корона должна обладать и непрерывным спектром в рассматриваемой области, происходящим
Наблюдения, выполненные при помощи ракет, дали возможность получить ультрафиолетовый спектр Солнца. Этот спектр уже был описан в предыдущем параграфе. Там же было сказано, что в основном ультрафиолетовое излучение Солнца возникает в верхней хромосфере и переходной области от хромосферы к короне. Однако часть этого излучения, обусловленная многократно ионизованными атомами, идёт от короны.
Как известно, излучение очень коротких длин волн (примерно от 0,1 A до нескольких десятков ангстрем) принадлежит уже к рентгеновской области спектра. Легко понять, что в короне с её высокой температурой должно возникать довольно сильное рентгеновское излучение. При этом, как следует из сказанного выше, оно может (быть как непрерывным, так и линейчатым.
Рентгеновское излучение Солнца также наблюдалось при помощи ракет. При этом наблюдения велись с фильтрами преимущественно в участках спектра 2—8, 8—18 и 44—60 A, т.е. в области мягкого рентгена. Проведение наблюдений в течение ряда лет позволило получить зависимость интенсивности рентгеновского излучения от фазы солнечной активности. Оказалось, что в годы максимума активности рентгеновское излучение в несколько раз интенсивнее, чем в годы минимума. Объясняется это как возрастанием плотности короны, так и повышением её температуры при переходе от минимума к максимуму активности.
Большой интерес представляют результаты наблюдения рентгеновского излучения Солнца во время затмения 1958 г. Один из них состоит в доказательстве того, что рентгеновское излучение Солнца возникает действительно в короне. Основанием для такого заключения служит тот факт, что во время полной фазы затмения интенсивность рентгеновского излучения составляет значительную долю (порядка 10%) от его интенсивности вне затмений (в то же самое время интенсивность излучения в линии L, возникающего в хромосфере, уменьшается примерно в тысячу раз). Другой важный результат был получен путём изучения зависимости интенсивности рентгеновского излучения от фазы затмения. Обнаружилось, что особенно сильное рентгеновское излучение идёт от частей короны, находящихся над активными областями поверхности Солнца. Такой вывод подтверждается и фотографиями Солнца в рентгеновских лучах, полученными вне затмения.
Особенно интересны результаты наблюдения рентгеновского излучения во время хромосферных вспышек. В этих случаях в течение довольно коротких промежутков времени (порядка нескольких минут) наблюдаются потоки жёсткого рентгеновского излучения — с длинами волн порядка 1 A и меньше. Для объяснения такого излучения можно высказать предположение об образовании в короне очень горячих областей. Вычисления дали представление о спектре рентгеновского излучения короны при разных температурах. Например, температура около 10 кельвинов достаточна для появления излучения с длиной волны порядка 3 A. Однако для объяснения наблюдаемого излучения более коротких длин волн приходится допустить наличие в короне механизма нетеплового излучения.
§ 18. Радиоизлучение Солнца
1. Результаты наблюдений.
Радиоизлучение
Наблюдения радиоизлучения Солнца с земной поверхности могут вестись в довольно широком интервале длин волн — от нескольких миллиметров до нескольких десятков метров. Излучение более коротких волн поглощается в земной атмосфере (молекулами O и HO), а излучение более длинных волн отражается от земной ионосферы.
Исследование радиоизлучения Солнца производится при помощи радиотелескопов, позволяющих измерить поток солнечного излучения определённой длины волны. Для измерения интенсивностей радиоизлучения, идущего от разных мест солнечного диска, приходится применять радиотелескопы больших размеров или радиоинтерферометры. Это вызвано тем, что разрешающая сила, определяемая отношением диаметра отверстия телескопа к длине волны излучения, в радиодиапазоне гораздо меньше, чем в оптике.
Очень ценные сведения о распределении яркости по диску в радиочастотах получаются также во время солнечных затмений. Заметим, что именно при наблюдениях солнечного затмения 1947 г. С. Э. Хайкин и Б. М. Чихачев впервые экспериментально доказали корональную природу радиоизлучения Солнца в метровом диапазоне волн (так как во время полного затмения поток радиоизлучения оказался равным примерно 40% потока вне затмения).
Измеренную интенсивность радиоизлучения I обычно характеризуют яркостной температурой T, т.е. представляют её в виде I=B(T), где B(T) — планковская интенсивность при температуре T. Так как для радиочастот h/kT<<1, то формула Планка переходит в формулу Рэлея — Джинса:
B
(T)
=
2^2
c^2
kT
.
(18.1)
Поэтому яркостная температура определяется соотношением
I
=
2^2
c^2
kT
.
(18.2)
Измеренный поток радиоизлучения Солнца может быть записан в виде
H
=
I
.
(18.3)
где I — средняя интенсивность излучения и — телесный угол, под которым виден солнечный диск. Понимая под I планковскую интенсивность, соответствующую температуре T, мы можем эту температуру принять в качестве меры потока излучения. Величина T, представляет собой среднюю яркостную температуру для частоты . Пользуясь формулой (18.2), имеем
H