Чтение онлайн

на главную

Жанры

Квантовая механика и интегралы по траекториям
Шрифт:

Предположим, что к квантовой электродинамике можно перейти, рассмотрев эти осцилляторы как квантовомеханические; справедливость такого допущения тоже обсуждалась нами в гл. 8. Каждому значению k в нашей системе соответствуют две бегущие волны с поляризацией 1 и 2 и частотой =kc. Для каждой из этих волн (например, волны с амплитудой a1k) возможные энергетические уровни будут равны

E

1k

=

n

1k

+

1

2

hkc

,

(9.35)

где n1k

произвольное положительное целое число или нуль.

Если n1k=1, то говорят, что имеется один фотон с поляризацией 1 и импульсом hk. В общем случае мы имеем n1k таких фотонов, и энергия каждого из них равна hkc.

Задача 9.5. Пусть импульс электромагнитного поля задаётся в виде (1/4c)ExBd(объём). Покажите, что в вакууме (при этом k=0 последнее выражение равно k(a*k·ak)d^3k/(2)^3.

Позднее, при рассмотрении взаимодействия вещества с полем излучения, обнаружится, что вещество излучает или поглощает энергию отдельными фотонами с энергией h. Это, очевидно, согласуется с первоначальной гипотезой Планка.

Тот факт, что n-е состояние осциллятора можно рассматривать как совокупность n «частиц» или «фотонов», кажется очень поразительным и неожиданным; однако значения энергии в обоих описаниях совпадают. Вместе с тем существует одно обстоятельство, на которое стоит обратить внимание до того, как мы начнём описывать поведение совокупности частиц состояниями осциллятора. Допустим, что из всех чисел nj отличны от нуля лишь два (например, na=1, nb=1). Эту ситуацию мы вправе интерпретировать двумя фотонами, один из которых находится в состоянии a, а другой — в состоянии b. Однако при таком подходе существуют два допустимых описания, отвечающих одной и той же энергии; в самом деле, ничто не мешает нам считать, что первый фотон находится в состоянии b, а второй — в состоянии a. Чтобы найти выход из этого положения, рассмотрим конкретный пример. Пусть мы имеем две -частицы, координаты которых обозначим соответственно через x и y; состояние частицы x будем описывать функцией f(x), а частицы y — функцией g(y). Тогда волновая функция системы выражалась бы функцией двух переменных: x и y:

(x,y)

=

f(x)

g(y)

.

(9.36)

Обратной ситуации, когда частица y находится в состоянии f, а частица x — в состоянии g, соответствует другая волновая функция:

(x,y)

=

g(x)

f(y)

,

(9.37)

которая, вообще говоря, отличается от первой. Но если наши частицы полностью тождественны, как это имеет место в случае -частиц, то эти два состояния неразличимы. Мы уже говорили в гл. 1, что в квантовой механике должно быть правило (не зависящее от уравнения Шрёдингера), согласно которому амплитуды для двух случаев, различающихся лишь перестановкой -частиц, всегда следует суммировать. При этом система описывается единственной волновой функцией

(x,y)

=

f(x)

g(y)

+

g(x)

f(y)

(9.38)

(нормированной соответствующим образом: если f и g ортонормальны, то нормировочная константа равна 1/2; если же они равны и нормированы, то эта константа равна 1/2 ). Вообще (x,y)=(y,x) для -частиц и всех других частиц, подчиняющихся статистике Бозе. Система двух таких частиц всегда описывается единственным образом, и при этом не различается, какая именно из них находится в состоянии f, а какая в состоянии g.

Нетрудно видеть, что все наши выводы согласуются между собой, если мы будем рассматривать набор возбуждённых состояний осциллятора как набор фотонов, а сами фотоны считать бозе-частицами. Тогда единичное состояние na=1, nb=1 соответствует ситуации, когда имеются два фотона — один в состоянии a, а другой в состоянии b. Их перестановка не приводит к новому состоянию.

Для электронов с параллельными спинами или для других тождественных ферми-частиц амплитуды, наоборот, вычитаются:

(x,y)

=

f(x)

g(y)

g(x)

f(y)

.

(9.39)

Волновая функция системы двух ферми-частиц всегда антисимметрична: (x,y)=-(y,x). Поэтому такая система не безразлична по отношению к перестановке частиц. В самом деле, если в формуле (9.39) положить f=g, то получим (x,y)=0. К фотонам и -частицам это не относится; подобный случай у фотонов соответствует состояниям осциллятора с n=2.

Можно указать один частный случай, когда с помощью некоторой идеализации электромагнитное поле в присутствии вещества удаётся описать ненамного сложнее, чем поле в вакууме. Это случай полого резонатора (или волновода), стенки которого можно считать идеально проводящими. Как хорошо известно из классической теории, при этом возникает набор мод с более или менее сложным распределением электромагнитных полей. Классическая функция действия и в этом случае сводится к функции действия для совокупности свободных осцилляторов, но переменные здесь представляют собой амплитуды различных мод, а не амплитуды плоских бегущих волн. Далее эти осцилляторы квантуются, и можно говорить о числе фотонов, соответствующем каждой моде.

§ 3. Основное состояние

Энергия вакуума. Состояние электромагнитного поля с наинизшей возможной энергией, которое мы будем называть основным или вакуумным,— это состояние, в котором у всех осцилляторов все n равны нулю и нет фотонов никаких мод. Это значит, что энергия каждого осциллятора равна h/2, где — его собственная частота. Если теперь просуммировать эту энергию основного состояния по бесконечному числу всех возможных мод с возрастающей частотой (а число мод не ограничено даже для резонатора конечных размеров), то подобная сумма будет расходиться. Мы натолкнулись на первую из трудностей, которые появляются в квантовой электродинамике.

В нашем случае (для вакуумного состояния) эта трудность легко устранима. Предположим, что при измерении энергии мы выбираем различные начала отсчёта. Так как постоянная добавка ко всем энергиям не приводит ни к каким физическим эффектам, то произвольный выбор нулевого значения энергии не будет влиять на результаты любого проводимого нами эксперимента. Поэтому мы положим энергию вакуумного состояния равной нулю. Тогда полная энергия произвольного состояния электромагнитного поля определится формулой

E

=

n

j

h

j

,

j

(9.40)

где суммирование проводится по всем модам поля. К сожалению, в реальном случае нельзя отсчитывать энергию от совершенно произвольного значения. Энергия эквивалентна массе, а с массой связана гравитация. Даже на свет действуют гравитационные силы (например, луч света отклоняется притяжением Солнца). Следовательно, если закон равенства действия противодействию справедлив хотя бы качественно, то и Солнце должно притягиваться фотонами, а это значит, что с каждым фотоном, энергия которого равна h, связано некоторое гравитационное поле. Тогда возникает вопрос: не приводит ли к такому же эффекту и член, соответствующий энергии основного состояния? Физически этот вопрос формулируется так: не образует ли вакуум гравитационного поля, подобного полю массы, распределённой с постоянной плотностью?

Поделиться:
Популярные книги

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Последняя Арена 2

Греков Сергей
2. Последняя Арена
Фантастика:
рпг
постапокалипсис
6.00
рейтинг книги
Последняя Арена 2

Системный Нуб 2

Тактарин Ринат
2. Ловец душ
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Системный Нуб 2

Ледяное проклятье

Михайлов Дем Алексеевич
4. Изгой
Фантастика:
фэнтези
9.20
рейтинг книги
Ледяное проклятье

Путь Шамана. Шаг 5: Шахматы Кармадонта

Маханенко Василий Михайлович
5. Мир Барлионы
Фантастика:
фэнтези
рпг
попаданцы
9.34
рейтинг книги
Путь Шамана. Шаг 5: Шахматы Кармадонта

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Кровь, золото и помидоры

Распопов Дмитрий Викторович
4. Венецианский купец
Фантастика:
альтернативная история
5.40
рейтинг книги
Кровь, золото и помидоры

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й