Леденящие звезды. Новая теория глобальных изменений климата
Шрифт:
Каждый год на планете образуются миллиарды тонн нового органического вещества; исходя из этого, можно было бы ожидать, что жизнь наиболее продуктивна во времена теплого, благодатного климата. Однако это не так. Пиковые значения углерода-13 говорят о том, что самая высокая продуктивность биосферы за последние 500 миллионов лет пришлась на последнюю часть каменноугольного периода, то есть 300–320 миллионов лет назад. Тогда Земля как раз наведалась в рукав Наугольника, интенсивность космических лучей была высока, и на континенты наползли обширные ледяные щиты.
Почему же тогда должна была благоденствовать жизнь? Возможно, по тем же причинам, что и в сегодняшнюю ледниковую эру. Температурный контраст между теплыми тропиками и заледеневшими
Неудивительно, что для карбонатных пород, формировавшихся во время эпизодов «Земли-снежка», то есть в периоды, отделенные от нас 2300 и 700 миллионами лет, свойствен чрезвычайно низкий уровень углерода-13: в те холодные времена наземный лед практически остановил процесс фотосинтеза и мертвые организмы возвращали природе накопленный ими углерод-12. Но эти времена упадка жизни перемежались взрывами яркого и бурного роста. Когда бы ни наступал перерыв в чрезмерном оледенении, жизнь в море тут же энергично восстанавливалась. Помимо того что при этом высвобождаются питательные вещества (не важно, в каменноугольный период или в наши дни), происходит обогащение органического материала соединениями углерода за счет необыкновенно высокого уровня углекислого газа, — именно это, возможно, подстегивало рост жизни в паузах между эпизодами «Земли-снежка».
Эти ремарки к драме жизни, вписанные атомами углерода, заставили Свенсмарка по-новому взглянуть на миллиарднолетнюю историю переменчивой фортуны нашей планеты. Оказалось, что звездное окружение Земли в Млечном Пути не только решает, куда должна крениться продуктивность океанской жизни — в сторону изобилия или в сторону скудости, но и задает наклон этого крена.
Колебания жизни были значительны — она то почти исчезала, как во времена «Земли-снежка», то нагуливала жирок, как это происходило в продуктивные времена наподобие каменноугольного периода, и этому соответствовали вполне логичные изменения в уровне углерода-13. Однако, помимо «углеродной» логики, работало что-то еще. Беспрерывные колебания жизни заставляют думать о каких-то тонких, неустойчивых, еле уловимых взаимосвязях между геологией, климатом и биологией. Причем интенсивность самих этих колебаний изменяется от одной фазы в истории Земли к другой.
В 2005 году Свенсмарк заметил, что вариабельность углерода-13 тесно связана с вариабельностью морских температур, определяемых с помощью кислорода-18. На протяжении последних 500 миллионов лет частые изменения климата сопровождались большими и тоже частыми переменами в продуктивности жизни. Но когда Свенсмарк заглянул в еще более далекое прошлое, он увидел, что изменчивость биосферы была временами не в пример значительнее.
Свенсмарк изумился, осознав, что изменчивость биосферы достигла максимума в период между отметками 2,4 и 2 миллиарда лет назад — это примерно соответствовало первому эпизоду «Земля-снежок». Как раз в то время интенсивность космических лучей была особенно велика вследствие звездных взрывов в нашей Галактике. Тогда Свенсмарк взял отрезок времени в 3,6 миллиарда лет, разделил его на сегменты по 400 миллионов лет и сравнил изменения в вариабельности углерода-13 с расчетными показателями интенсивности космических лучей.
Совпадение было
Около 3,4 миллиарда лет назад действия юного Солнца по отражению космических лучей были весьма успешны, интенсивность заряженных частиц оставалась на низком уровне, и продуктивность жизни, как свидетельствует углерод-13, колебалась в малых пределах. Между отметками 3,2 и 2,8 миллиарда лет назад скорость звездообразования была такая же, как сегодня. Похожими были и колебания биологической продуктивности в океане.
Как любопытно! Тогда существовали только бактерии, а сейчас трудятся целые флотилии куда более совершенных организмов, поддерживая пищевые цепочки, идущие снизу вверх — от простейших до высших рыб и китов. И все же общая чуткость первых бактерий и современной экосистемы к переменам климата примерно одна и та же, если судить по отклонениям в ту и другую стороны от средней скорости поглощения организмами двуокиси углерода, требуемой им для роста.
Около 2,8 миллиарда лет назад интенсивность космических лучей сильно возросла, принеся с собой значительное изменение климата, и жизнь стала активнее. На пике звездных взрывов, произошедших 2,4–2,2 миллиарда лет назад, вместе с которыми началось превращение Земли в «снежок», космические лучи все еще были сильными, так же как и колебания углерода-13, на что впервые обратил внимание Свенсмарк.
Между отметками 2 и 1,2 миллиарда лет назад поток космических лучей опять оставался на низком уровне, и продуктивность биосферы изменялась незначительным образом. Зато следующий всплеск звездной рождаемости побудил жизнь собрать все свои силы и вызвал изменения, продолжавшиеся даже тогда, когда 750 миллионов лет назад вся планета покрылась льдом. Это было время «большого взрыва» в эволюции, которая изобрела многоклеточные эукариоты — предшественников животных и высших растений. 800 миллионов лет назад вариабельность биосферы была относительно высока. После этого она пошла на убыль и вернулась к показателям, существовавшим 3 миллиарда лет назад.
Эта новая история биосферы, рассказанная путем истолкования данных об углероде-13 с привлечением астрономической хроники, очаровывает и озадачивает своей простотой. Содержание истории открыто для широкого обсуждения. Например, уровни содержания углерода-13 задаются не только ростом живых организмов. Высокая скорость оседания органического материала на морское дно может увеличить пропорцию углерода-13 за счет вытеснения углерода-12. Когда же трупы мертвых существ растворяются в морской воде и возвращают ей углерод-12, пропорция углерода-13 идет вниз. И еще: уровень углерода-13 в морской воде связан с преобладанием в атмосфере двуокиси углерода.