Чтение онлайн

на главную

Жанры

Леденящие звезды. Новая теория глобальных изменений климата
Шрифт:

Ученые выяснили, что наиболее вероятный кандидат — это скопление звезд, располагающееся в направлении Южного Креста и, таким образом, не наблюдаемое в Европе или Северной Америке. Речь идет о подгруппе Нижний Центавр — Южный Крест в ОВ-ассоциации Скорпион — Центавр, находящейся от нас сегодня на расстоянии около 400 световых лет. Согласно расчетам Хесуса Маиса Апельяниса из университета Джонса Хопкинса (штат Мэриленд, США), эта подгруппа всего несколько миллионов лет назад была ближе к Земле на 100 световых лет. Одна из внешних звезд этого скопления могла подойти к нам на расстояние 120 световых лет и затем взорваться.

Или же банда преступных звезд может скрываться на другой стороне неба, в созвездии Тельца. Самая известная там группировка — это Плеяды, ранее упоминавшиеся

как Семь Сестер. Они расположены вне Пояса Гулда, но со звездами, входящими в пояс, их объединяет общее происхождение. Плеяды достаточно близко расположены, чтобы вы могли невооруженным глазом увидеть семь ярких голубых красавиц в сопровождении почти ста кавалеров. Расстояние до Плеяд все время увеличивается, а это значит, что раньше они были к нам ближе.

Самых больших ОВ-звезд в этом скоплении уже нет — они взорвались, не дожив до наших дней. Возможно, за последние двадцать миллионов лет как раз двадцать звезд и взорвались. Томас Бергхёфер из Гамбургской обсерватории и Дитер Брайтшвердт из Института внеземной физики общества Макса Планка в Гаршинге предположили, что ответственность за всплеск атомов железа-60 лежит на одной из исчезнувших звезд Плеяд.

Решение этого вопроса, вероятно, откладывается до обнаружения большего количества редких радиоактивных изотопов и в небе, и на Земле. На сегодняшний день сверхновая, разыскиваемая учеными из Мюнхена, — все еще загадка для астрономов. Оба варианта — Нижний Центавр — Южный Крест и Плеяды — могут оказаться ошибочными.

Барабанная дробь звезд

Искать другие сверхновые — самая последняя из забот. Хватило бы одной или двух, оказавшихся достаточно близко, чтобы оросить Землю экзотическими изотопами, поиск которых все еще продолжается — и в древних антарктических льдах, и на морском дне. Тем не менее даже если другие сверхновые в Поясе Гулда были слишком далеко, чтобы поставлять на Землю атомы, они все же могли спровоцировать рост космических лучей.

Статистические данные о Поясе Гулда позволяют предположить, что барабанная дробь звездных взрывов могла вызвать несколько таких скачков в течение последних трех миллионов лет, и каждый был способен повлечь за собой более или менее суровую «космическую зиму». Содержание тяжелого кислорода в микроокаменелостях на морском дне говорит о том, что было несколько особенно сильных похолоданий: 2,7 миллиона лет назад, 2,1 миллиона лет, 1,3 миллиона лет, 700 тысяч лет и 500 тысяч лет назад. Но чтобы связать их со сверхновыми, от астрономов требуется не статистика — от них требуются даты.

Прежде чем приступить к определению возрастов взорвавшихся звезд, необходимо их распознать, и наземные и орбитальные телескопы предлагают несколько способов решения этой задачи. Самое очевидное, с астрономической точки зрения, — это просто «увидеть» остатки сверхновых: они представляют собой облака звездных обломков, все еще полыхающие в видимом и невидимом свете. Однако собранный по всему небу урожай из 250 объектов сможет рассказать историю, простирающуюся в прошлое лишь на несколько тысяч лет.

Или же нужно хорошенько потрудиться, разыскивая радиоактивные атомы, оставшиеся после взрывов и все еще «засоряющие» небо. Эти атомы обнаруживают себя, испуская гамма-лучи определенных энергий, которые можно уловить с помощью орбитальных гамма-телескопов. Так, например, с помощью данных, полученных спутником НАСА «Комптон», Роланд Диль с коллегами из Института внеземной физики общества Макса Планка нашли различимые приметы алюминия-26, рассеянного по всему диску Млечного Пути рядом со скоплениями больших звезд. Гамма-лучи также говорят о радиоактивном излучении, поступающем из Пояса Гулда — в частности, от ассоциации ОВ-звезд Скорпион — Центавр — теперь эту группу также подозревают в том, что она могла быть источником железа-60, достигшего Земли.

Группа Роланда Диля прибегла к помощи европейского спутника ИНТЕГРАЛ [93] , чтобы с высокой точностью просчитать эти гамма-лучи и вычислить общую массу алюминия-26,

рассеянного в космосе: она в три раза превысила массу Солнца. Чтобы образовалось такое количество столь редких атомов, нужно, чтобы в Галактике каждые пятьдесят лет взрывалась одна массивная звезда, — и эта цифра совпадает с ожиданиями астрофизиков.

Пояс Гулда выгодно отличается от других групп звезд, потому что он расположен под углом к основному диску Галактики. Дальнейшая работа ИНТЕГРАЛа позволит уловить достаточно гамма-лучей, чтобы точно определить те области Пояса Гулда, где повышена концентрация алюминия-26 и других элементов, — такие области должны соответствовать остаткам сверхновых, которые не распознаются иными методами. Затем можно будет определить соотношение разных радиоактивных элементов и, таким образом, установить, как давно произошли взрывы.

93

Имеется в виду Международная обсерватория гамма-лучей ИНТЕГРАЛ (INTEGRAL–INTErnational Gamma-Ray Astrophysics Laboratory) — орбитальная обсерватория, предназначенная для изучения галактических и внегалактических объектов в жестком рентгеновском и гамма-диапазоне. Выведена на орбиту в 2002 году с космодрома Байконур и работает по сей день. «ИНТЕГРАЛ» — проект Европейского космического агентства в сотрудничестве в Роскосмосом и НАСА.

Третий способ определения возраста сверхновых связан с нейтронными звездами. Нейтронные звезды — это сильно сжатые остатки ядер взорвавшихся массивных звезд. Их открыли в конце 1960-х благодаря тому, что для этих объектов характерно особое пульсирующее радиоизлучение (почему их и назвали радиопульсарами). С тех пор обнаружено более тысячи нейтронных звезд. Однако большинство этих скрытных особ звездного неба, возможно, молчаливы в радиодиапазоне, зато их можно распознать как пульсирующие источники рентгеновских и гамма-лучей.

Первым образцом такой радиомолчаливой нейтронной звезды стала Геминга, обнаруженная в 1973 году как яркий источник гамма-излучения в созвездии Близнецов. Ее отделяют от нас 500 световых лет, а несется она сквозь Галактику на огромной скорости. Геминга могла остаться от сверхновой, взорвавшейся около трехсот тысяч лет назад в созвездии Ориона — на расстоянии 1300 световых лет. В 1990-е годы спутник «Комптон» зарегистрировал двадцать неопознанных точечных источников гамма-лучей в Поясе Гулда, и среди них могли быть нейтронные звезды. Более точные результаты следует ожидать от спутника НАСА ГЛАСТ [94] , выведенного на орбиту в 2008 году.

94

Имеется в виду космическая обсерватория ГЛАСТ (GLAST — Gammaray Large Area Space Telescope), впоследствии названная Космическим гамма-телескопом Ферми. Эта обсерватория предназначена для изучения больших областей космоса в диапазоне гамма-излучения с низкой земной орбиты.

Поднять исследовательский дух могут два любопытных небесных объекта, которые служат весьма необычным доказательством существования сверхновой интересующего нас возраста. Если взрывается гигантская звезда, имеющая звезду-компаньона, кружащую по орбите вокруг нее, то выживший компаньон убегает со сцены, иногда даже с очень большой скоростью. Одного такого дезертира мы можем видеть сейчас невооруженным глазом в созвездии Змееносца. Это массивная голубая звезда Хан, или Дзета Змееносца. Линию полета дезертира можно проследить в обратном направлении до пересечения с траекторией другого беглеца — это уже нейтронная звезда: пульсар J1932. Оба происходят из подгруппы ассоциации Скорпион ОВ2 в Поясе Гулда. Так и видится картина: сверхновая выбрасывает из своего чрева нейтронную звезду, а компаньон Хан тут же уносится прочь, подобно камню, выпущенному из пращи. Ученые из Лейденской обсерватории в Нидерландах сделали необходимые расчеты и утверждают, что взрыв этой сверхновой произошел примерно миллион лет назад.

Поделиться:
Популярные книги

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Отмороженный 9.0

Гарцевич Евгений Александрович
9. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 9.0

Под знаменем пророчества

Зыков Виталий Валерьевич
3. Дорога домой
Фантастика:
фэнтези
боевая фантастика
9.51
рейтинг книги
Под знаменем пророчества

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Дядя самых честных правил 8

Горбов Александр Михайлович
8. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 8

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Смертник из рода Валевских. Книга 1

Маханенко Василий Михайлович
1. Смертник из рода Валевских
Фантастика:
фэнтези
рпг
аниме
5.40
рейтинг книги
Смертник из рода Валевских. Книга 1

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Тройняшки не по плану. Идеальный генофонд

Лесневская Вероника
Роковые подмены
Любовные романы:
современные любовные романы
6.80
рейтинг книги
Тройняшки не по плану. Идеальный генофонд

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого