Логико-философский трактат
Шрифт:
5. 131. Если истинность одного предложения следует из истинности других, то это выражается теми отношениями, в которых находятся между собой формы этих предложений; и мы не нуждаемся в том, чтобы ставить их в эти отношения, связывая предварительно друг с другом в одно предложение, так как эти связи являются внутренними и существуют постольку, и лишь постольку, поскольку существуют эти предложения.
5. 1311. Если мы заключаем от р V q и ~р к q, то отношение между формами предложений «p\/q» и «~р» здесь затемняется способом обозначения. Но если мы, например, вместо «pVq»
5. 132. Если р следует из q, то я могу заключить от q к р; вывести р из q. Способ вывода всегда познается из обоих предложений. Только они могут оправдывать вывод. «Законы вывода», которые должны – как у Фреге и Рассела – оправдывать выводы, не имеют смысла и были бы излишни.
5. 133. Все выводы происходят априори.
5. 134. Из одного элементарного предложения не может следовать никакое другое.
5. 135. Никаким образом нельзя заключать из существования какого-либо одного положения вещей о существовании другого, полностью отличного от первого.
5. 136. Нет причинной связи, которая оправдывает подобный вывод.
5. 1361. События будущего не могут выводиться из событий настоящего. Вера в причинную связь есть предрассудок.
5. 1362. Свобода воли состоит в том, что будущие действия сейчас не могут быть познаны. Мы могли бы их знать только в том случае, если причинность была бы внутренней, необходимостью, как и необходимость логического вывода. Связь здания и познанного есть связь логической необходимости. («А знает, что р имеет место» не имеет смысла, если р есть тавтология.)
5. 1363. Если из того, что предложение для нас очевидно, не следует, что оно истинно, то очевидность также не является оправданием для нашей веры в его истинность.
5. 14. Если какое-либо предложение следует из другого, то последнее говорит больше, чем первое; первое меньше, чем последнее.
5. 141. Если р следует из q и q из р, то они являются одним и тем же предложением.
5. 142. Тавтология следует из всех предложений: она ничего не говорит.
5. 143. Противоречие есть то общее у предложений, что ни одно предложение не имеет общим с другими. Тавтология есть общее всех тех предложений, которые не имеют друг с другом ничего общего. Противоречие исчезает, так сказать, вне всех предложений, тавтология – внутри них. Противоречие есть внешняя граница предложений, тавтология – их лишенный субстанции центр.
5. 15. Если Иr – количество оснований истинности предложения «r», а Иrs – количество тех оснований истинности предложения «s», которые одновременно являются основаниями истинности «r», то мы назовем отношение Иrs: Иr мерой вероятности, которую предложение «r» дает предложению «s».
5. 151. Пусть в схеме, подобной той, которая приведена выше за № 5. 101, Иr – количество «И» в предложении «r»; Иrs – количество тех «И» в предложении s, которые стоят в одинаковых столбцах с «И» предложения r. Тогда предложение « r « дает предложению «s» вероятность Иrs: Иr.
5. 1б11. Нет никакого особого объекта, свойственного вероятностным предложениям.
5. 152. Предложения, которые не имеют общих друг с другом аргументов истинности, мы называем независимыми друг от друга. Два элементарных предложения дают друг другу вероятность 1/2. Если р следует из q, то предложение q дает предложению «р» вероятность 1. Достоверность логического вывода есть предельный случай вероятности. (Применение к тавтологии и противоречию.)
5. 153. Предложение само по себе ни вероятно, ни невероятно. Событие наступает или не наступает; среднего не дано.
5. 154. В урне было одинаковое количество белых и черных шаров (и только их). Я вытаскиваю один шар за другим и кладу их в урну обратно. Тогда я могу установить опытом, что число вынутых черных и белых шаров приближается друг к другу при постоянном вынимании. Это, следовательно, не математический факт. Если я теперь говорю: одинаково вероятно, что я вытяну-как белый шар, так и черный, то это означает: все известные мне обстоятельства (включая и гипотетически принимаемые естественные законы) придают наступлению одного события не больше вероятности, чем наступлению другого. Это означает, что они дают – как легко понять из вышеприведенных разъяснений – каждому событию вероятность, равную 1/2. Проверить я могу только то, что наступление этих двух событий не зависит от обстоятельств, которых я не знаю более подробно.
5. 155. Единица вероятностного предложения такова: обстоятельства – о которых я больше ничего не знаю – дают наступлению определенного события такую-то и такую-то степень вероятности.
5. 156. Таким образом, вероятность есть обобщение. Она включает общее описание формы предложения. Только за неимением достоверности мы нуждаемся в вероятности. Когда мы знаем факт не полностью, но, однако, знаем что-то о его форме. (Хотя предложение, действительно, может быть не полным образом определенного положения вещей, но оно всегда какой-нибудь полный образ.) Вероятностное предложение является как бы извлечением из других предложений.
5. 2. Структуры предложении стоят друг к другу во внутренних отношениях.
5. 21. Мы можем подчеркнуть эти внутренние отношения в нашем способе выражения, изображая предложение как результат операции, которая образует его из других предложений (оснований (Basen) операций).
5. 22. Операция есть выражение отношения между структурами их результатов и их оснований.
5. 23. Операция есть то, что должно произойти с предложением, чтобы образовать из него другие.
5. 231. И это, естественно, зависит от их формальных свойств, от внутреннего подобия их форм.