Чтение онлайн

на главную

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

> FFT(2,х,y);

4

> print(х);

[10., -4., -2., 0.]

> print(y);

[26., 0., -2., -4.]

> iFFT(2,х,y);

4

> print(x);

[1.0000000, 2.0000000, 3.0000000, 4.0000000]

> print(y);

[5.0000000, 6.0000000, 7.0000000, 8.0000000]

Несмотря на высокую эффективность быстрых преобразований Фурье их недостатком является применение только к дискретно

заданным численным данным, причем с числом отсчетов кратным двум в целой степени. Если данных меньше, недостающие элементы обычно заменяются нулями.

Альтернативой преобразований Фурье в наши дни стали вейвлет-преобразования. Вейвлеты это новый обширный базис для приближения произвольных зависимостей вейвлетами — «короткими» волночками разной формы, способными к масштабированию и перемещению. Вейвлеты прекрасно подходят для приближения локальных особенностей различных зависимостей, в том числе нестационарных (с параметрами, меняющимися во времени). Ознакомиться с вейвлетами и средствами работы с ними в системах MATLAB, Mathematica и Mathcad можно по книге [55]. К сожалению, в Maple готовые средства вейвлет-преобразований отсутствуют и это серьезный недостаток этих систем.

5.11.3. Общая характеристика пакета inttrans

Для расширенной поддержки интегральных преобразований служит пакет inttrans

Это один из пакетов, наиболее важных для общематематических и научно-технических приложений. Он вызывается командой

> with(inttrans);

[addtable, fourier, fouriercos, fouriersin, hankel, hilbert, invfourier, invhilbert, invlaplace, invmellin, laplace, mellin, savetable]

и содержит небольшой набор функций. Однако эти функции охватывают такие практические важные области математики, как ряды Фурье, прямые и обратные преобразования Лапласа и Фурье и ряд других интегральных преобразований. Ниже они обсуждены более подробно.

5.11.4. Прямое и обратное преобразование Фурье

Прямое преобразование Фурье преобразует функцию времени f(t) в функцию частот F(w) и заключается в вычислении следующей интегральной функции:

Оно в аналитическом виде реализуется следующей функцией пакета интегральных преобразований inttrans:

fourier(expr, t, w)

Здесь expr — выражение (уравнение или множество), t — переменная, от которой зависит expr, и w — переменная, относительно которой записывается результирующая функция.

Обратное преобразование Фурье задается вычислением интеграла

Оно фактически переводит представление сигнала из частотной области во временную. Благодаря этому преобразования Фурье удобны для анализа прохождения воздействий (сигналов) si(t) через устройства (цепи), заданные их частотной характеристикой K(w):

si(t)→fourier→s(w)→s(w)∙K(w)→invfourier→so(t).

Здесь si(t) и so(t) — временные зависимости соответственно входного и выходного сигналов.

Определение (визуализация) преобразований Фурье и примеры их осуществления представлены ниже:

> restart:with(inttrans): assume(lambda>0,а>0):

> convert(fourier(f(t), t, s), int);

> convert(invfourier(f(t),t,s),int);

> fourier(sin(t),t,w);

– I π Dirac(w - 1) + I π Dirac(w + 1)

> invfourier(%,w,t);

sin(t)

> fourier(1-exp(-a*t),t,w);

2 π Dirac(w) - fourier(e(-at),t,w)

> invfourier(%,w,t);

1 - e(-at)

> fourier(ln(1/sqrt(1+x^2)),x,y);

> fourier(BesselJ(n,x),x,y);

5.11.5. Вычисление косинусного и синусного интегралов Фурье

Разложение функции f(t) в ряд Фурье требует вычисления интегралов следующего вида:

Они получили название косинусного и синусного интегралов Фурье и фактически задают вычисление коэффициентов ряда Фурье, в который может быть разложена функция f(t).

Для вычисления этих интегралов в пакете используются следующие функции:

fouriercos(expr,t,s)

fouriersin(expr,t,s)

Поскольку формат задания этих функций вполне очевиден, ограничимся примерами визуализации сути этих функций и примерами их применения:

> convert(fouriercos(f(t),t,s),int);

> convert(fouriersin(f(t),t,s),int);

> fouriercos(5*t,t,s);

> fouriersin(5*t,t,s);

> fouriercos(exp(-t),t,s);

> fouriercos(arccos(х) * Heaviside(1-х), х, y);

> fouriersin(arcsin(x) * Heaviside(1-х), x, y);

Нетрудно заметить, что эти преобразования нередко порождают специальные математические функции. Много примеров на преобразования Фурье содержатся в файле демонстрационных примеров fourier.mws.

5.11.6. Прямое и обратное преобразование Лапласа

Преобразования Лапласа — одни из самых часто применяемых интегральных преобразований. Они широко применяются в электрорадиотехнике и часто используются для решения линейных дифференциальных уравнений.

Поделиться:
Популярные книги

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Бывшая жена драконьего военачальника

Найт Алекс
2. Мир Разлома
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бывшая жена драконьего военачальника

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Жандарм 2

Семин Никита
2. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 2

Императорский отбор

Свободина Виктория
Фантастика:
фэнтези
8.56
рейтинг книги
Императорский отбор

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь

Все не случайно

Юнина Наталья
Любовные романы:
современные любовные романы
7.10
рейтинг книги
Все не случайно

Восход. Солнцев. Книга XI

Скабер Артемий
11. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга XI

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Лорд Системы 7

Токсик Саша
7. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 7