Maple 9.5/10 в математике, физике и образовании
Шрифт:
В данном случае уравнение регрессии задано в виде z = а + bх +
5.12.4. Линейная регрессия общего вида
Функция fit может использоваться и для выполнения линейной регрессии общего вида:
Функция такой регрессии является линейной комбинацией ряда функций f1(х), f2(х), f3(х), причем каждая их них может быть и нелинейной, например экспоненциальной, логарифмической, тригонометрической и т.д. Пример линейной регрессии общего вида представлен на рис. 5.30.
Рис. 5.30. Пример выполнения линейной регрессии общего вида
В литературе и даже в документах системы Maple линейная регрессия общего вида часто называется нелинейной регрессий. Однако это неверно, поскольку нелинейной является регрессия, функция которой не может быть представлена линейной комбинацией функций.
5.12.5. О нелинейной регрессии с помощью функции fit
К сожалению, функция fit неприменима для нелинейной регрессии. При попытке ее проведения возвращается структура процедуры, но не результат регрессии — см. пример ниже:
Однако, большинство нелинейных зависимостей удается свести к линейным с помощью простых линеаризирующих преобразований [1, 2, 4]. На рис. 5.31 показан пример экспоненциальной регрессии f(x)=аеbх, которая (благодаря логарифмированию точек y) сводится к линейной регрессии. Детали преобразований даны в документе рис. 5.31. Используя другие преобразования этот документ легко приспособить для выполнения других видов нелинейной регрессии, например степенной или логарифмической.
Рис. 5.31. Пример экспоненциальной регрессии
Функция нелинейной регрессии входит в новейший пакет оптимизации Optimization, введенный в Maple 9.5, и описанный в следующей главе. Кроме того, на Интернет-сайте корпорации Waterloo Maple можно найти файлы simplenl.mws и gennlr.mws с процедурами и примерами линейной и нелинейной регрессий общего вида. Интересная реализация нелинейной регрессии для кусочной функции дается в файле nonelinearpiecewise.mws.
5.12.6. Сплайновая регрессия с помощью функции BSplineCurve
Функция BSplineCurve из пакета CurveFitting может использоваться для реализации сплайновой регрессии. Пример этого представлен на рис. 5.32. Опция order задает порядок B-сплайнов, который на 1 меньше заданного целого значения.
Рис. 5.32. Пример выполнения сплайновой регрессии В-сплайнами
Функция BsplineCurve выглядит несколько недоделанной. Так, при order=3 и 4 кривая регрессии не дотягивает до концевых точек, а при установки order=1 все точки соединяются отрезками прямых — в том числе концевые. Так что использовать эту функцию для экстраполяции нельзя.
5.13. Работа с функциями двух переменных
5.13.1. Maplet-инструмент для работы с функциями двух переменных
Для эффектной демонстрации работы с функциями многих переменных в состав пакета Student системы Maple 9.5 введен новый подпакет MultivariateCalculus. Его примеры можно запускать как с командной строки, так и из позиции Tools меню в стандартном варианте интерфейса — Tutors→Calculus→Calculus-Multi-Variables.
Approximate Integration… — открывает Maplet-окно аппроксимации двойных интегралов;
Cross Section… — открывает Maplet-окно демонстрации сечения поверхности;
Directional Derivatives… — открывает Maplet-окно вычисления производных в заданном направлении;
Gradient… — открывает Maplet-окно вычисления градиента;
Taylor Series… — открывает Maplet-окно разложения функций в ряд Тейлора.
Представленные средства носят учебный характер — не случайно они входят в пакет Student. Реально визуализация возможна только для функций двух переменных.
5.13.2. Демонстрация разложения в ряд Тейлора функции двух переменных
Команда Taylor Series… — открывает Maplet-окно разложения функции двух переменных z(х, у) в ряд Тейлора относительно заданной точки (х0, у0). Это окно представлено на рис. 5.33.
Рис. 5.33. Maplet-окно демонстрации разложения в ряд Тейлора функции двух переменных
В данном окне дан пример разложения в ряд Тейлора функции sin(x*y) в окрестности точки (0, 0) в интервале изменения х[-2, 2], у[-2, 2] и z[-1, 1]. Установки в окне совершенно очевидны. Графики в правой части представляют поверхность, описываемую исходной функцией и поверхность, представленную рядом Тейлора. Кнопка Display начинает построение графиков, кнопка Animation позволяет наблюдать анимацию разложения, а кнопка Close закрывает окно и переносит рисунок в текущий документ системы Maple 9 5.
5.13.3. Демонстрация вычисления градиента функции двух переменных
Команда Gradient… — открывает Maplet-окно демонстрации вычисления градиента функции двух переменных z(x, у) в ряд Тейлора относительно заданной точки (х0, y0). Это окно представлено на рис. 5.34.
Рис. 5.34. Maplet-окно демонстрации вычисления градиента функции двух переменных
Работа с этим окном практически не отличается от описанной для примера с рядом Тейлора. Единственное исключение — новая кнопка Gradient Field Plot. Она позволяет строить график поля градиента с помощью стрелок. Этот случай представлен на рис. 5.35.