Чтение онлайн

на главную

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

6.2.4. Работа с векторами и матрицами

Для работы с векторами и матрицами Maple имеет множество функций, входящих в пакет linalg. Ограничимся приведением краткого описания наиболее распространенных функций этой категории.

Операции со структурой отдельного вектора V и матрицы М:

• coldim(M) — возвращает число столбцов матрицы М;

• rowdim(M) — возвращает число строк матрицы М;

• vectdim(V) — возвращает размер вектора V;

• col(M.i) — возвращает i-й столбец матрицы М;

• row(M,i) — возвращает i-ю строку матрицы М;

• minor(M,i,j) — возвращает минор матрицы М для элемента с индексами i и j;

• delcols(M,i..j) — удаляет

столбцы матрицы М от i-го до j-го;

• delrows(V,i..j) — удаляет строки матрицы М от i-й до j-й;

• extend(M,m,n,x) — расширяет матрицу М на m строк и n столбцов с применением заполнителя х.

Основные векторные и матричные операции:

• dotprod(U,V) — возвращает скалярное произведение векторов U и V;

• crossprod(U,V) — возвращает векторное произведение векторов U и V;

• norm(V) или norm(M) — возвращает норму вектора или матрицы;

• copyinto(A,B,i,j) — копирует матрицу А в В для элементов последовательно от i до j;

• concat(M1,M2) — возвращает объединенную матрицу с горизонтальным слиянием матриц М1 и М2;

• stack(M1,M2) — возвращает объединенную матрицу с вертикальным слиянием М1 и М2;

• matadd(A,B) и evalm(A+B) — возвращает сумму матриц А и В;

• multiply(A,B) и evalm(A&*B) — возвращает произведение матриц А и В;

• adjoint(M) или adj(M) — возвращает присоединенную матрицу, такую, что M∙adj(M) дает диагональную матрицу, определитель которой есть det(M);

• charpoly(M,lambda) — возвращает характеристический полином матрицы М относительно заданной переменной lambda;

• det(M) — возвращает детерминант (определитель) матрицы М;

• Eigenvals(M,vector) — инертная форма функции, возвращающей собственные значения матрицы М и (при указании необязательного параметра vector) соответствующие им собственные векторы;

• jordan(M) — возвращает матрицу М в форме Жордана;

• hermite(M) — возвращает матрицу М в эрмитовой форме;

• trace(M) — возвращает след матрицы М;

• rank(M) — возвращает ранг матрицы М;

• transpose(M) — возвращает транспонированную матрицу М;

• inverse(M) или evalm(1/M) — возвращает матрицу, обратную к М;

• singularvals(A) — возвращает сингулярные значения массива или матрицы А.

Приведем примеры применения некоторых из этих функций (файл linalgop):

> M:=matrix(2,2, [a,b,с,d]);

> transpose(M);

> inverse(M);

> det(M);

ad - bc

> rank(M);

2

> trace(M);

a + d

> M:=matrix(2,2,[1,2,3,4]);

> ev:=evalf(Eigenvals(M,V));

ev := [-.372281323, 5.372281323]

> eval(V);

> charpoly(M,p);

p² - 5p - 2

> jordan(M);

> A:= array([[1,0,1],[1,0,1],[0,1,0]]);

> singularvals(А);

[0, 2, 1]

В приведенных примерах полезно обратить внимание на то, что многие матричные функции способны выдавать результаты вычислений в аналитическом виде, что облегчает разбор выполняемых ими операций.

6.2.5. Решение систем линейных уравнений

Одной из самых распространенных задач линейной алгебры является решение систем линейных уравнений. Ниже представлен простой пример составления и решения трех систем линейных уравнений с применением функций, входящих в пакет linalg (файл sle):

> with(linalg):

> C:=matrix(3,3,[[4,8,2],[6,2,3],[3,7,11]]);

> B:=matrix(3,1, [5,6,1]);

> A:=evalm(C);

> A1 :=copyinto(В, С, 1, 1);

> C:=evalm(A):А2:=copyinto(В,С,1,2);

> C:=evalm(A):A3:=copyinto(В,С,1,3);

> x1:=det(A1)/det(А);

> x2:=det(A2)/det(A);

> x3:=det(A3)/det(a);

А теперь рассмотрим пример решения матричного уравнения в символьном виде:

> A:=matrix(2,2,[a,b,с,d]);

> В:=vector(2, [с,d]);

В := [с, d]

> X:=linsolve(А,В);

Следующий пример показывает решение более сложной системы линейных уравнений с комплексными коэффициентами:

> А:=matrix(2,2,[[10+200*1,-200*1],[-200*1,170*1]]);

Поделиться:
Популярные книги

Лорд Системы 13

Токсик Саша
13. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 13

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Запретный Мир

Каменистый Артем
1. Запретный Мир
Фантастика:
фэнтези
героическая фантастика
8.94
рейтинг книги
Запретный Мир

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Великий князь

Кулаков Алексей Иванович
2. Рюрикова кровь
Фантастика:
альтернативная история
8.47
рейтинг книги
Великий князь

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Черный Маг Императора 4

Герда Александр
4. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 4

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

Император поневоле

Распопов Дмитрий Викторович
6. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Император поневоле

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Назад в СССР: 1985 Книга 4

Гаусс Максим
4. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Назад в СССР: 1985 Книга 4

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9