Maple 9.5/10 в математике, физике и образовании
Шрифт:
7.8.5. Примеры применения функции PDEplot
Рисунок 7.28 демонстрирует применение функции PDEplot. Этот пример из справки показывает, насколько необычным может быть решение даже простой системы дифференциальных уравнений в частных производных.
Рис. 7 28. Пример применения функции PDEplot
В данном случае решение представлено трехмерной фигурой весьма нерегулярного вида.
Другой пример использования функции PDEplot показан
Рис. 7.29. Построение комбинированного графика с помощью функции PDEplot
Еще раз отметим, что, к сожалению, рисунки в данной книге не дают представления о цвете выводимых системой Maple графиков. Поэтому наглядность решений, видимых на экране монитора, существенно выше.
7.9. Сложные колебания в нелинейных системах и средах
7.9.1. Пример нелинейной системы и моделирование колебаний в ней
Многие системы (например, нелинейные оптические резонаторы, лазерные устройства и др.) описываются системами из более чем двух нелинейных дифференциальных уравнений. Колебания в таких системах нередко носят сложный нестационарный, а порою даже хаотический характер. Примером этого может служить анализ переходных процессов в системе, описываемой тремя дифференциальными уравнениями и представленной на рис. 7.30.
Рис. 7.30. Пример решения системы из трех нелинейных дифференциальных уравнений, создающей колебания сложной формы
Поведение системы описывается тремя постоянными sigma, b и r, меняя которые можно получить самый различный вид временных зависимостей x(t), y(t) и z(t). Даже на ограниченном промежутке времени эти зависимости имеют весьма сложный и почти непредсказуемый характер и далеки от периодических колебаний. Нередко в них проглядывает фрактальный характер.
7.9.2. Фазовый портрет на плоскости
Функция odeplot позволяет получать не только графики временных зависимостей, но и фазовые портреты колебаний. Рисунок 7.31 показывает построение фазового портрета в плоскости (x, y).
Рис. 7.31. Фазовый портрет колебаний на плоскости (х, у)
Нетрудно заметить, что фазовый портрет отчетливо выделяет два фокуса, которые соответствуют слабым осцилляциям нарастающих почти гармонических колебаний, время от времени повторяющимся. В целом же фазовый портрет колебаний оказывается довольно запутанным и хорошо иллюстрирует развитие нестационарных компонент колебаний.
7.9.3. Фазовые портреты в пространстве
Можно разнообразить представления о колебаниях, перейдя к построению трехмерных (пространственных) фазовых портретов. Они делают такое представление более полным. На рис. 7.32 представлен фазовый портрет в пространстве при параметрическом задании семейства функций [x(t), y(t), z(t)].
Рис. 7.32. Фазовый портрет колебаний в пространстве
Фазовый портрет отчетливо выявляет, что большая часть колебаний развивается в двух плоскостях пространства, причем в каждой из них имеется свой фокус.
Еще один вариант пространственного фазового портрета показан на рис. 7.33. Он хорошо представляет динамику развития колебаний в плоскости (у, z) при изменении времени t. Фазовый портрет весьма любопытен — хорошо видны две «трубки» в которых развиваются переходные процессы. В них можно выделить характерные раскручивающиеся спирали.
Рис. 7.33. Фазовый портрет колебаний в пространстве [t, y(t), z(t)]
Остается отметить, что для повышения наглядности переходных процессов в графиках рис. 7.32 и 7.33 используется вывод осей координат в виде «ящика» (опция axes=BOX) и поворот изображения с помощью мыши.
7.9.4. Распространение волн в нелинейной среде
Многие наяву или в кино видели, как большие волны воды в море или океане теряют свой гармонический характер. Их гребни, расположенные в воздухе, явно движется быстрее, чем впадины, в результате во времени гребень достигает предшествующей ему впадины и может даже перегнать ее. Радиотехники давно научились использовать распространение волн в нелинейных средах для получения очень коротких перепадов напряжения или тока.
Моделирование этого сложного явления (обострения фронта волн и потеря ими устойчивости) достаточно просто осуществляется волновым дифференциальным уравнением в частных производных Бюргерса. Рисунок 7.34 показывает пример задания и решения этого уравнения.
Рис. 7.34. Моделирование процесса распространения волн в нелинейной среде
Здесь поначалу задана синусоидальная волна, которая хорошо видна на переднем плане рисунка для малых времен t. Представление результата моделирования в трехмерном пространстве позволяет наглядно представить, как меняется форма волны во времени. Нетрудно заметить, что фронт волны и впрямь обостряется и может даже приобрести отрицательный наклон.
7.10. Интерактивное решение дифференциальных уравнений
7.10.1. Новые средства интерактивного решения дифференциальных уравнений
Поскольку Maple университетская система, разработчики новых версий Maple предприняли большие усилия в повышении степени визуализации всех стадий решения дифференциальных уравнений. В частности были введены новые средства решения дифференциальных уравнений в интерактивном режиме, при котором каждая стадия решения наглядно отображается в соответствующем окне. Это едва ли нужно инженерам и научным работникам, понимающим суть и стадии решения, но, безусловно, полезно преподавателям и студентам высших учебных заведений.