Чтение онлайн

на главную

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

varparam(sols,v,ivar)

находит общее решение дифференциального уравнения (или системы уравнений) sols методом вариации параметров. Параметр v задает правую часть уравнения; если он равен 0, ищется только частичное решение.

> varparam([u1(х), u2(х)[LDV4]], g(x), х);

{x1(t) = (e(-K1 t)C K2 + e(-K1 t)K1 a + e(-K1 t)K2 b – e(-K1 t)K1 C – e(-K1 t)a K2 – K2 e(-K1 t)b + K1 C – C K2)/(K1 – K2), x2(t) = b e(-K2 t) }

Более

подробную информацию об этих функциях читатель найдет в их справочных страницах, а также в информационном документе DEtools.mws, содержащем систематизированное описание пакета DEtools с многочисленными примерами его применения.

7.4.4. Дифференциальные операторы и их применение

Средствами пакета DEtools предусмотрена работа с дифференциальными операторами DF, которые дают компактное представление производных, например (файл difop):

> restart; with(DEtools):

> df := x*2*DF^2 - x*DF + (х^2 - 1);

df := x²DF² - x DF + x² - 1

Данное выражение представляет собой дифференциальное уравнение второго порядка, записанное через дифференциальные операторы. С помощью функции diffop2de это уравнение можно преобразовать в обычное дифференциальное уравнение:

> diffop2de(df,y(x),[DF,x]);

Теперь это уравнение можно решить с помощью функции dsolve:

> dsolve(%, y(x));

у(х) = _C1 х BesselJ(√2, x) + _С2 х BesselY(√2, x)

Уравнения с дифференциальными операторами имеет вид степенного многочлена. Поэтому с ним можно выполнять множество операций, характерных для полиномов, например факторизацию, комплектование по степеням и др. В практике инженерных и научных расчетов дифференциальные операторы применяются довольно редко. Множество примеров с ними дано в файле примеров diffop.mws.

7.5. Графическая визуализация решений дифференциальных уравнений

7.5.1. Применение функции odeplot пакета plots

Для обычного графического представления результатов решения дифференциальных уравнений может использоваться функция odeplot из описанного выше пакета plots. Эта функция используется в следующем виде:

odeplot(s,vars, r, о)

где s — запись (в выходной форме) дифференциального уравнения или системы дифференциальных уравнений, решаемых численно функцией dsolve, vars — переменные, r — параметр, задающий пределы решения (например, a..b) и о — необязательные дополнительные опции.

На рис. 7.11 представлен пример решения одиночного дифференциального уравнения с выводом решения у(х) с помощью функции odeplot.

Рис. 7.11. Пример решения одиночного дифференциального уравнения

В этом примере решается дифференциальное уравнение

у'(х) = cos(x²y(x))

при у(0)=2 и х, меняющемся от -5 до 5. Левая часть уравнения записана с помощью функции вычисления производной diff. Результатом построения является график решения y(x).

В другом примере (рис. 7.12) представлено решение системы из двух нелинейных дифференциальных уравнений. Здесь с помощью функции odeplot строятся графики двух функций — y(х) и z(x).

Рис. 7.12. Пример решения системы из двух дифференциальных уравнений

В этом примере решается система:

y'(х) = z(х),
z'(x) = 3 sin(y(x))

при начальных условиях y(0)=0, z(0)=1 и х, меняющемся от -4 до 4 при числе точек решения, равном 25.

Иногда решение системы из двух дифференциальных уравнений (или одного дифференциального уравнения второго порядка) представляется в виде фазового портрета — при этом по осям графика откладываются значения у(х) и z(х) при изменении х в определенных пределах. Рисунок 7.13 демонстрирует построение фазового портрета для системы, представленной выше.

Рис. 7.13. Представление решения системы дифференциальных уравнений в виде фазового портрета

Обычное решение, как правило, более наглядно, чем фазовый портрет решения. Однако для специалистов (например, в теории колебаний) фазовый портрет порою дает больше информации, чем обычное решение. Он более трудоемок для построения, поэтому возможность Maple быстро строить фазовые портреты трудно переоценить.

7.5.2. Функция DEplot из пакета DEtools

Специально для решения и визуализации решений дифференциальных уравнений и систем с дифференциальными уравнениями служит инструментальный пакет DEtools. В него входит ряд функций для построения наиболее сложных и изысканных графиков решения дифференциальных уравнений. Основной из этих функций является функция DEplot.

Функция DEplot может записываться в нескольких формах:

DEplot(deqns, vars, trange, eqns)

DEplot(deqns, vars, trange, inits, eqns)

DEplot(deqns, vars, trange, yrange, xrange, eqns)

DEplot(deqns, vars, trange, inits, xrange, yrange, eqns)

Здесь deqns — список или множество, содержащее систему дифференциальных уравнений первого порядка или одиночное уравнение любого порядка; vars — зависимая переменная или список либо множество зависимых переменных; trange — область изменения независимой переменной t; inits — начальные условия для решения; yrange — область изменения для первой зависимой пере-

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Волк: лихие 90-е

Киров Никита
1. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк: лихие 90-е

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Огни Аль-Тура. Желанная

Макушева Магда
3. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.25
рейтинг книги
Огни Аль-Тура. Желанная

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Раб и солдат

Greko
1. Штык и кинжал
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Раб и солдат

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Титан империи 7

Артемов Александр Александрович
7. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 7

Низший - Инфериор. Компиляция. Книги 1-19

Михайлов Дем Алексеевич
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Низший - Инфериор. Компиляция. Книги 1-19

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5