Maple 9.5/10 в математике, физике и образовании
Шрифт:
10.6.2. Вычисление интеграла по известной формуле
Рассмотрим следующий пример (файл р9):
Ранние версии системы Maple не брали этот интеграл, поскольку он не имеет аналитического представления через обычные функции. Maple блестяще вычисляет этот «крепкий орешек», но полученное выражение довольно сложно.
Из математики известно, что такой интеграл может быть представлен в следующем виде:
Используя эту формулу, мы можем создать простую процедуру для численного и аналитического вычисления данного интеграла.
Проверим ее в работе:
Результат в аналитическом виде довольно прост для данного интеграла с конкретным значением n. Более того, мы получили несколько иной результат и для n в общем случае. Но точен ли он? Для ответа на этот вопрос продифференцируем полученное выражение:
Результат дифференцирования выглядит куда сложнее, чем вычисленный интеграл. Однако с помощью функции simplify в Maple 9 он упрощается к подынтегральной функции:
Maple 9.5 выдал более замысловатое выражение:
Это говорит о том, что задача вычисления заданного интеграла в аналитической форме действительно решена. А что касается громоздкости результатов, так ведь системы, подобные Maple, для того и созданы, чтобы облегчить нам работу с громоздкими вычислениями — в том числе аналитическими.
10.6.3. Вложенные процедуры и интегрирование по частям
Теперь мы подошли к важному моменту, о котором читатель наверняка уже давно догадался — в составляемых пользователям процедурах можно использовать ранее составленные им (или кем-то еще) другие процедуры! Таким образом, Maple-язык позволяет реализовать процедуры, вложенные друг в друга.
Для иллюстрации применения вложенных процедур рассмотрим операцию интегрирования по частям. Пусть нам надо вычислить интеграл
где р(х) — выражение, представляющее полином.
Вначале подготовим процедуру IntExpMonomialR, реализующую вычисление уже рассмотренного ранее интеграла, но рекурсивным способом (файл р9):
Проверим ее в работе:
Теперь составим процедуру для вычисления по частям нашего интеграла: