Maple 9.5/10 в математике, физике и образовании
Шрифт:
Рис. 10.17. Подготовка маплета в виде окна с надписью
После записи файла маплета он окончательно формируется в виде стандартного окна Windows и надписью в нем — рис. 10.18. Маплет можно перемещать по окну документа, сворачивать в бирку в панели задач, разворачивать во весь экран и сворачивать к минимальному размеру и закрывать. Для этого в конце титульной строки имеются три обычные кнопки управления окном.
Рис. 10.18.
10.10.3. Пример проектирования маплета — окна с графиком функции
Построим еще един простой маплет — окно с графиком заданной функции. Для этого перетащим в окно проектирования маплета элемент типа окна графики — рис. 10.19. Затем в области параметров этого элемента для параметра value введем строку с командой построения графика функции sin(x)/x: plot(sin(x)/х, x=-10..10). Остальные параметры оставляем заданными по умолчанию, хотя их можно изменять, например для изменения цвета фона, размера и положения рисунка и т.д. Затем в меню File надо исполнить команду Run — появится окно записи маплета в файл.
Рис. 10.19. Подготовка к созданию маплета — окна с графиком функции
После записи маплета в файл он сформируется окончательно в виде стандартного окна Windows-приложения с графиком заданной функции — рис. 10.20. Это окно можно перемещать, сворачивать и разворачивать и закрывать.
Рис. 10.20. Завершение создания маплета — окна с графиком функции
10.10.4. Справка по проектированию маплетов
Характер и объем данной книги не позволяют описать подробно визуально-ориентированное проектирование маплетов. Однако, разобрав приведенные выше примеры, читатель может обратиться к справке по проектированию маплетов, которая вызывается активизацией позиции Help меню окна ассистента Maplet Builder. Один из разделов справки с простыми примерами проектирования маплетов представлен в окне, показанном на рис. 10.21.
Рис. 10.21. Раздел справки с простыми примерами проектирования маплетов
В справке можно найти и несколько более сложных примеров. Их разборка потребует нескольких часов времени, после чего пользователь приобретет достаточный опыт в подготовке своих собственных маплетов.
Глава 11
Maple в математическом моделировании
Мы уже рассмотрели множество математических и научно-технических задач самого общего характера. Некоторые из них могут показаться на первый взгляд абстрактными. Поэтому в этой главе приводится полное решение целого ряда вполне конкретных учебных и научно-технических задач из области физики, квантовой механики, электро-радиотехники и акустики [22, 23, 53, 54]. Эти задачи хорошо иллюстрируют технику решения научно-технических задач в среде системы Maple путем математического моделирования. Рекомендуется также просмотреть примеры применения системы Maple 10.
11.1. Исследование и моделирование линейных систем
11.1.1. Демпфированная система второго порядка
Резонансные LCR-контуры в электрорадиотехнике,
Замечательно то, что огромное число таких систем описывается системой из двух линейных дифференциальных уравнений или одним линейным дифференциальным уравнением второго порядка. Рассмотрим типичную сильно демпфированную систему — вне зависимо от ее конкретной реализации. Проведем ее анализ и выполним моделирование, ограничившись поначалу минимумом средств системы Maple.
Рис. 11.1. Задание дифференциального уравнения второго порядка для сильно демпфированной системы второго порядка
Рис. 11.1 представляет начало документа, в котором задано нормированное дифференциальное уравнение второго порядка, записанное в виде, известном из учебников по теории колебаний, радио- или электротехники. Здесь же построен характеристический полином данного дифференциального уравнения и найдены его корни. Они оказались действительными, что является признаком апериодичности анализируемой системы. И отрицательными, что указывает на затухание собственных колебаний системы.
Дифференциальное уравнение DE представленного вида имеет два параметра — параметр p определяющий степень демпфирования системы и параметр q, определяющий резонансную частоту системы. В данном примере в качестве внешнего воздействия используется синусоидальное воздействие (сигнал в радиотехнических системах). Для решения дифференциального уравнения надо задать его начальные условия. Все это и сделано на рис. 11.1.
Поскольку Maple — система символьной математики, то она позволяет получить результат моделирования системы второго порядка в аналитическом виде. Это и показано на рис. 11.2. Здесь даны два решения — одно при отсутствии воздействия и другое при наличии воздействия. Нетрудно заметить, что решения представлены в аналитическом виде и достаточно просты, хотя и не имеют привычного нормированного вида. Обратите внимание на то, что решение при отсутствии воздействия представлено только экспоненциальными членами с отрицательными показателями степени. Это говорит об апериодическом поведении системы и затухании в ней энергии.
Рис. 11.2. Решение задачи моделирования системы второго порядка при синусоидальном воздействии
График исходного воздействия и реакций системы также представлен на рис. 11.2. Нетрудно заметить, что при р=3 система ведет себя как типичная апериодическая система — возникшее отклонение уменьшается без колебаний. Однако при наличии воздействия его колебательная компонента появляется в реакции системы — это видно и из аналитического решения для y(t) и из графика решения.
11.1.2. Система с малым демпфированием под внешним синусоидальным воздействием
Теперь слегка модернизируем представленный выше документ и зададим параметры p и q, соответствующие слабо демпфированной колебательной системе — рис. 11.3. Нетрудно заметить, что теперь характеристический полином имеет комплексные корни, что (для знающих теорию колебаний) указывает на колебательный характер поведения системы. Такие системы являются резонансными.