Maple 9.5/10 в математике, физике и образовании
Шрифт:
Для начала зададим инициализацию применяемых пакетов расширения
Далее зададим операторные выражения для коэффициента передачи системы G и входного сигнала R (в виде единичного перепада) и вычислим с упрощением их произведение:
Теперь,
Теперь мы можем построить график этой зависимости для конкретных значений М, С и K:
Вид этой зависимости представлен на рис. 11.19. Он соответствует реакции системы второго порядка для случая затухающих колебаний.
Рис. 11.19. Одна из временных зависимостей реакции системы второго порядка
А теперь зададимся целью наглядно проиллюстрировать изменение временной зависимости реакции системы при изменении параметра С от 0 до 2 при М=1 и K=1. Для этого выполним следующие вполне очевидные команды:
Соответствующий график показан на рис. 11.20. Он прекрасно иллюстрирует переход от апериодического режима при С=2 к колебательному при С= 0 при изменении времени от 0 до 20.
Рис. 11.20. Динамика развития колебаний в системе при изменении параметра С
Аналогичным образом можно построить трехмерный образ временной зависимости реакции системы для М=1, С=0.25 и изменении параметра K от 0 до 3. Для этого надо выполнить команды:
Диаграмма временных зависимостей представлена на рис. 11.21.
Рис. 11.21. Динамика развития колебаний в системе при изменении параметра K
Представленные на рис. 11.20 и 11.21 диаграммы дают весьма наглядное представление о динамике поведения рассмотренной системы. Но еще важнее то, что просто изменением операторной записи G и R по описанной методике можно анализировать и наглядно представлять работу множества линейных систем.
11.2. Моделирование динамических задач и систем
11.2.1. Расчет траектории камня с учетом сопротивления воздуха
Вы хотите метнуть камень в огород вашего вредного соседа? Разумеется во время его отсутствия. Давайте промоделируем эту ситуацию, предположив два актуальных случая: дело происходит на Земле в условиях, когда наша планета лишилась воздуха и когда, слава богу, он все же есть. В первом случае сопротивления воздуха нет, а в другом сопротивление воздуха есть и его надо учитывать. Иначе камень упадет в ваш огород, а не в огород соседа!
Учет сопротивления воздуха не просто усложняет задачу нашу задачу. Он делает ее нелинейной. В связи с этим мы применим численные методы решения дифференциальных уравнений. Кроме того, учитывая громоздкость документов, описывающих приведенные ниже задачи, перейдем к их записи прямо в тексте книги.
Итак, пусть подвернувшиеся под руку камни с массой 500 и 100 грамм брошены под углом 45 к горизонту со скоростью VO=20 м/с. Найдем их баллистические траектории, если сила сопротивления воздуха Fmp=A*V, где А=0,1 Н∙с/м. Сравним их с траекториями, получающейся без учета сопротивления воздуха. Документ с решением этой задачи, описанным ниже, представлен в файле balist.
Начнем с подключения пакета plots, нужного для визуализации данной задачи:
Составим параметрические уравнения для проекций скорости на оси координат:
Мы рассматриваем два случая: камень массой 500 г и камень массой 100 г. Поскольку для каждого случая мы предусматриваем расчет в двух вариантах (с учетом сопротивления воздуха и без такого учета), то мы должны составить 4 системы дифференциальных уравнений (ДУ). Каждая система состоит из двух ДУ второго порядка и вид этих систем известен из курса физики. Ниже представлено задание этих систем ДУ (для первой системы дан вывод ее вида):
Зададим исходные числовые безразмерные данные для расчета: