Maple 9.5/10 в математике, физике и образовании
Шрифт:
Далее построим фазочастотную характеристику фильтра как зависимость фазы в радианах от частоты f в Гц:
Фазочастотная характеристика (ФЧХ) фильтра показана на рис. 11.32.
Рис. 11.32. ФЧХ фильтра на операционном усилителе
На
11.3.4. Проектирование цифрового фильтра
Основной недостаток аналоговых активных фильтров, подобных описанному выше, заключается в их малом порядке. Его повышение, за счет применения многих звеньев низкого порядка, ведет к значительному повышению габаритов фильтров и их стоимости. От этого недостатка свободны современные цифровые фильтры, число ячеек которых N даже при однокристальном исполнении может достигать десятков и сотен. Это обеспечивает повышенную частотную селекцию.
Спроектируем фильтр N+1-го порядка класса FIR (Finite Impulse Response или с конечной импульсной характеристикой). Документ, решающий эту задачу, представлен в файле fir.
Каждая из N ячеек временной задержки фильтра удовлетворяет следующей зависимости выходного сигнала у от входного х вида:
Подключим пакет расширения plots, нужный для графической визуализации проектирования:
Зададим исходные данные для проектирования полосового цифрового фильтра, выделяющего пятую гармонику из входного сигнала в виде зашумленного меандра с частотой 500 Гц:
Вычислим:
Зададим характеристику полосового фильтра:
Вычислим FIR коэффициенты для прямоугольного окна фильтра
Определим массивы входного x(n) и выходного y(n) сигналов:
Установим значение x(n) равным 0 для времени меньше 0 и 1 для времени t>=0.
Вычислим временную зависимость для выходного сигнала.
Построим график импульсной характеристики фильтра, отражающей его реакцию на сигнал единичной площади с бесконечно малым временем действия:
Он показан на рис. 11.33. Нетрудно заметить, что эта характеристика свидетельствует об узкополосности фильтра, поскольку его частоты fl и fh различаются не сильно. В этом случае полосовой фильтр по своим свойствам приближается к резонансному, хотя само по себе явление резонанса не используется.
Рис. 11.33. Импульсная характеристика цифрового фильтра
Вычислим АЧХ фильтра, используя прямое преобразование Фурье. Оно, после подготовки обрабатываемых массивов, реализуется функцией FFT:
Построим график АЧХ фильтра:
Он представлен на рис. 11.34. Нетрудно заметить, что и впрямь АЧХ фильтра напоминает АЧХ резонансной цепи — она имеет вид узкого пика. Вы можете легко проверить, что раздвижением частот fl и fh можно получить АЧХ с довольно плоской вершиной и резкими спадами (говорят, что такая характеристика приближается к прямоугольной).
Рис. 11.34. АЧХ цифрового полосового фильтра