Чтение онлайн

на главную

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

Составим систему дифференциальных уравнений цепи и выполним ее решение с помощью функции dsolve:

> se:=diff(i(t),t) = (Es-i(t)*Rs-u(t)) /L,

difff(u(t), t) = (i(t)- Id(u(t))) / С;

> F:=dsolve({se, i(0)=0, u(0)=0}, {i(t),u(t)}, type=numeric,

method-=classiccal, stepsize=10^(-11), output=listprocedure);

F := [t = (proc(t) … end proc), u(t) =
i(t) = (proc(t) … end proc)]

Поскольку

заведомо известно, что схема имеет малые значения L и С мы задали с помощью параметров достаточно малый шаг решения для функции dsolve — stepsize=10^(-11) (с). При больших шагах возможна численная неустойчивость решения, искажающая форму колебаний, получаемую при моделировании. Используя функции odeplot и display пакета plots построим графики решения в виде временных зависимостей u(t) и 10∙i(t) и линии, соответствующей спряжению Es источника питания:

> gu:=odeplot(F,[t, u(t)], 0..tm, color=black,

labels=[`t`, `u(t),10*i(t)`]):

> gi:=odeplot(F, [t, 10*i (t)], 0..tm, color=black):

> ge:=odeplot(F, [t,Es], 0..tm, color=red):

> display(gu, gi, ge);

Эти зависимости представлены на рис. 11.40. Из них хорошо видно, что цепь создает автоколебания релаксационного типа. Их форма сильно отличается от синусоидальной.

Рис. 11.40. Временные зависимости напряжения на туннельном диоде и тока

Решение можно представить также в виде фазового портрета, построенного на фоне построенных ВАХ и линии нагрузки резистора Rs:

> gv:=plot({Id(Ud), (Es-Ud)/Rs), Ud=-.05..0.75, color=black, labels=[Ud,Id]):

> gpp:=odeplot(F,[u(t),i(t)], 0..tm,color=blue):

> display(gv,gpp);

Фазовый портрет колебаний показан на рис. 11.41.

Рис. 11.41. Фазовый портрет колебаний на фоне ВАХ туннельного диода и линии нагрузки резистора Rs

О том, что колебания релаксационные можно судить по тому, что уже первый цикл колебаний вырождается в замкнутую кривую — предельный цикл, форма которого заметно отличается от эллиптической (при эллиптической форме фазового портрета форма колебаний синусоидальная).

Итак, мы видим, что данная цепь выполняет функцию генератора незатухающих релаксационных колебаний. Хотя поставленная задача моделирования цепи на туннельном диоде успешно решена, в ходе ее решения мы столкнулись с проблемой обеспечения малого шага по времени при решении системы дифференциальных уравнений, описывающих работу цепи. При неудачном выборе шага можно наблюдать явную неустойчивость решения.

11.3.6. Моделирование детектора амплитудно-модулированного сигнала

Еще один пример, наглядно иллюстрирующий трудности моделирования существенно нелинейных систем и цепей, описывающихся нелинейными дифференциальными уравнениями — детектирование амплитудно-модулированных сигналов. Простейший детектор таких сигналов представляет собой полупроводниковый диод, через который источник сигнала подключается к параллельной RC-цепи, выполняющей роль простого фильтра (без конденсатора С результат детектирования имел бы вид обрезанного снизу сигнала).

Диод имеет резко нелинейную вольт-амперную характеристику. Ток через него равен:

Id = I0∙(еv/0.05– 1),

где v — напряжение на диоде, I0 — малый обратный ток диода.

Экспоненциальная зависимость тока от напряжения порождает большие трудности в моделировании этого крайне простого устройства. На обратной ветви вольт-амперной характеристики диода его дифференциальное сопротивление очень велико (многие МОм), а на прямой ветви напротив мало (десятки и даже единицы Ом). Это порождает жесткость дифференциального уравнения, описывающего детектор и требует применения численных методов решения жестких дифференциальных уравнений. Заметим, что аналитического решения данная задача не имеет, ввиду нелинейности дифференциального уравнения, описывающего работу детектора.

С учетом этих обстоятельств, построен документ, представленный на рис. 11.42, и решающий данную задачу. В нем определено исходное дифференциальное уравнение и содержится его решение при заданных исходных данных — детектируется амплитудно-модулированный сигнал с амплитудой Um=5 В (размерные величины опущены), частотой несущей f=20 кГц, частотой модуляции F=1000 Гц и коэффициентом модуляции m=0.5. Определена вольт-амперная характеристика диода при I0=1 мкА и построен ее график. Далее выполнено решение нелинейного дифференциального уравнения при R=100 Ом и С=5 мкФ с помощью функции dsolve и построение графиков исходного сигнала и сигнала на выходе детектора (утолщенной линией).

Рис. 11.42. Моделирование детектора амплитудно-модулированного сигнала (пример 1)

Результат моделирования не очень удовлетворителен. В начале процесса виден рост выходного сигнала в промежутках между положительными полуволнами входного сигнала. Это противоречит физике процессов в детекторе — на этих участках конденсатор С может только разряжаться через резистор R и сигнал должен всегда падать. Затем ситуация еще хуже — некоторые полуволны входного сигнала, заметно превышающие по уровню входной сигнал явно пропущены. Все эти тонкости следствие грубого сбоя в решении нелинейного дифференциального уравнения и обусловлены неудачным автоматическим выбором методов решения данного дифференциального уравнения.

Любопытно поведение выходного сигнала и при его спаде при малой амплитуде входного сигнала. Этот эффект может иметь физическую природу — при большой выходной сигнал спадает медленно и отрывается от верхушек полуволн входного сигнала. Устранить этот нежелательный для детектирования эффект можно уменьшением R или С.

На рис. 11.43 показан пример более корректного моделирования. В нем в параметрах функции dsolve введена опция stiff=true, указывающая на необходимость применения методов решения жестких дифференциальных уравнений. Кроме того, уменьшено значение С=2мкФ. Моделирование теперь идет корректно, но выходной сигнал на спаде моделирующего сигнала не очень четко отслеживает последний. Это указывает, что постоянная времени RC все еще велика.

Поделиться:
Популярные книги

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Все не случайно

Юнина Наталья
Любовные романы:
современные любовные романы
7.10
рейтинг книги
Все не случайно

Проиграем?

Юнина Наталья
Любовные романы:
современные любовные романы
6.33
рейтинг книги
Проиграем?

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Измена. Я отомщу тебе, предатель

Вин Аманда
1. Измены
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Измена. Я отомщу тебе, предатель

Законы Рода. Том 7

Flow Ascold
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера