Maple 9.5/10 в математике, физике и образовании
Шрифт:
График траекторий движения альфа-частиц вблизи ядра представлен на рис. 11.27. Этот график настолько нагляден, что не требует пояснения.
Рис. 11.27. Траектории движения альфа-частиц вблизи ядра атома
Моделирование движения альфа-частиц вблизи малого и «массивного» ядра атома дают наглядное представление о математической и физической сути данного опыта. Надо лишь помнить,
11.3. Моделирование и расчет электронных схем
11.3.1. Нужно ли применять Maple для моделирования и расчета электронных схем?
Нужно ли применять системы компьютерной математики для анализа, расчета и моделирования электронных схем? Ответ на этот вопрос не так прост, как кажется с первого взгляда С одной стороны к услугам пользователя компьютера сейчас имеется ряд программ схемотехнического моделирования, например Micro-CAP, Electronics Workbench, PSpice, Design Labs и др., автоматически составляющих и решающих большие системы уравнений состояния электронных схем и моделирующих работу бесчисленного множества электронных схем без кропотливого «ручного» составления уравнений.
Но, с другой стороны, анализ схем в таких программах настолько автоматизирован, что начисто теряется его физическая и математическая сущность. Это не так уж страшно, когда моделируются типовые схемы на давно известных, или скорее просто хорошо знакомых, электронных приборах. Но, это явно плохо, когда объектом исследования и моделирования являются новые нетрадиционные схемы на новых или малоизвестных приборах или когда знание физических и математических основ работы таких схем принципиально необходимо. Например, при изучении их в вузах и университетах. В этом случае применение систем компьютерной математики не только возможно, но и принципиально необходимо.
11.3.2. Применение интеграла Дюамеля для расчета переходных процессов
Вернемся к линейным системам и рассмотрим еще один полезный метод расчета электрических цепей — с помощью интеграла Дюамеля. При нем можно рассчитать временную зависимость выходного напряжения u2(t) цепи по известному входному сигналу u1(t) и переходной характеристики цепи a(t). Возьмем в качестве первого классического примера дифференцирующую RC-цепь и вычислим ее реакцию на экспоненциально нарастающий перепад напряжения. Соответствующие расчеты приведены на рис. 11.28.
Рис. 11.28. Расчет реакции дифференцирующей цепи на экспоненциальный перепад напряжения
Рис. 11.28 представляет начало документа, в котором выполнен указанный выше расчет. Представлены заданные зависимости uI(t) и a(t), аналитическое выражение для интеграла Дюамеля (одна из 4 форм) и аналитическое выражение для искомой зависимости u2(t). Пока последнее выражение довольно простое. В конце этого фрагмента документа построены графики зависимостей u1(t), a(t) и u2(t).
Окончание документа, представленное на рис. 11.29, демонстрирует расчет на основе интеграла Дюамеля реакции дифференцирующей RC-цепи на экспоненциально затухающий синусоидальный сигнал u1(t).
Рис. 11.29. Расчет реакции дифференцирующей цепи на синусоидальный сигнал с экспоненциально уменьшающейся амплитудой
Обратите внимание на то, что выражение для u2(t), получаемое с помощью интеграла Дюамеля, стало намного сложнее. Тем не менее, получено как аналитическое выражения для реакции цепи u2(t), так и графики u1(t), a(t) и u2(t). Они показаны внизу графика.
11.3.3. Малосигнальный анализ фильтра-усилителя на операционном усилителе
Теперь рассмотрим проектирование аналогового полосового фильтра-усилителя на операционном усилителе (файл af), схема которого приведена на рис. 11.30. Сам операционный усилитель будем считать идеальным.
Рис. 11.30. Схема полосового фильтра на интегральном операционном усилителе
Подготовимся к расчету фильтра:
Зададим основные уравнения, описывающие работу усилителя на малом сигнале:
Введем круговую частоту
Найдем в аналитическом виде коэффициент передачи фильтра и его фазочастотную характеристику как функции от частоты:
Эти выражения, несмотря на простоту схемы усилителя, выглядят довольно сложно, что, однако, ничуть не мешает использовать их для выполнения расчетов. Зададим конкретные значения параметров:
Построим АЧХ фильтра как зависимость коэффициента передачи в децибелах (dB) от частоты f в Гц:
Эта характеристика представлена на рис. 11.31. Здесь полезно обратить внимание на то, что спад усиления на низких и высоких частотах происходит довольно медленно из-за малого порядка фильтра.
Рис. 11.31. АЧХ фильтра на операционном усилителе