Чтение онлайн

на главную

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

Рис. 4.5. Зависимость значения интеграла с подынтегральной функцией 1/(х+а)^2 и пределами от 0 до 2 от параметра а

Приведем еще один пример «каверзного» интеграла довольно простого вида:

> int(1/х^3,х=-1..2);

undefined

Этот интеграл не берется вообще, так что Maple совершенно справедливо об этом и сообщает. Но введение параметра CauchyPrincipalValue позволяет получить численное значение интеграла:

> int(1/х^3,х=-1..2,`CauchyPrincipalValue`);

Возьмем

еще один наглядный пример — вычисление интеграла от синусоидальной функции при произвольно больших пределах, но кратных 2π! Очевидно, что при этом (учитывая равность площадей положительной и отрицательной полуволн синусоиды) значение интеграла будет равно 0. Например:

> int(sin(х),x=-1000*pi..1000*pi);

0

Однако распространение этого правила на бесконечные пределы интегрирования является грубейшей ошибкой. Интеграл такого рода уже не сходится и Maple дает соответствующий результат:

> int(sin(х),x=-infinity..infinity);

undefined

Во многих областях техники часто употребляются математически неточные выражения «затухающая синусоида» или «нарастающая синусоида». Возьмем, к примеру, широко распространенную функцию: у(t)=exp(-t)sin(2π). Построим ее график и вычислим определенный интеграл от этой функции с пределами от 0 до ∞ (рис. 4.6).

Рис. 4.6. График «затухающей синусоиды» и интеграл от нее с пределами от 0 до ∞

С первого взгляда на график видно, что каждая положительная полуволна функции (затухающей «синусоиды») явно больше последующей отрицательной полуволны. К тому же осцилляции функции быстро затухают и через десяток-другой периодов значение функции становится исчезающе малым. Вот почему Maple уверенно вычисляет интеграл с такой подынтегральной функцией. Ее свойство — неопределенность при t→∞ просто исчезает.

А теперь возьмем антипод этой функции — «синусоиду с экспоненциально нарастающей до стационарного значения 1 амплитудой». Такая функция записывается следующим образом:

Y(t) = (1 - ехр(-t)) sin(2πt).

Ее график и попытки вычисления интеграла с такой подынтегральной функцией приведены на рис. 4.7.

Рис. 4.7. График «экспоненциально нарастающей синусоиды» и интеграл от нее с пределами от 0 до ∞

Обратите внимание на то, что здесь прямое вычисление интеграла к успеху не привело, хотя из графика функции видно, что каждая положительная полуволна в близкой к t=0 области явно больше по амплитуде, чем последующая отрицательная полуволна. Однако, в отличие от предыдущей функции, при больших значениях аргумента данная функция вырождается в обычную синусоиду с неизменной (и равной 1) амплитудой. Вот почему Maple честно отказывается вычислять не сходящийся интеграл от такой «коварной» функции.

4.4.6. Вычисление несобственных интегралов первого рода

Несобственными интегралами называют интегралы, у которых хотя бы один из пределов или подынтегральная функция устремляются в бесконечность. Соответственно различают несобственные интегралы первого и второго родов. Вычисления таких интегралов требует повышенного внимания и порой использования специальных методов. Из-за этого в старых реализациях Maple нередко такие интегралы просто не вычислялись, хотя на самом деле их решения (порою в виде специальных функций) существовали.

Последние версии Maple существенно продвинулись в направлении решения многих несобственных интегралов. Это видно из благополучного решения ряда таких несобственных интегралов первого рода, о которых спотыкались старые версии Maple и которые требуют специальных решений (файл intspec):

> Int(sin(х)/х^2,х=1..infinity);

> value(%);evalf(%);

sin(1) - Ci(1)
0.5040670619

> Int(sin(x)^2,х=0..infinity);

> value(%);

> Int(exp(-t^2)*sin(t^2),t=0..infinity);

> value(%);evalf(%);

> r:=Int(cos(x)/sqrt(х+х^2),x=0..infinity);

> value(r);evalf(r11);

> Int(ехр(-t^2), t=-infinity..infinity);

> value(%);

√π

> Int(exp(-t^2)*t*2, t=-infinity..infinity);

> value(%);

> Int(exp(-t)/t^(1/3), t=0..infinity);

> value(%);

> Int(exp(-t)*ln(t),t=0..infinity);

> value(%);

– γ

> Int(exp(-t)*ln(t)/t=1..infinity);

> value(%);

> evalf(%);

0.0506523094

> Int(exp(-x)*cos(x),x=0..infinity);

> value(%);

½

Для подавляющего большинства интегралов результат вычислений с применением функций Int и int оказывается абсолютно идентичным. Однако есть и исключения из этого правила. Например, следующий интеграл благополучно очень быстро вычисляется функцией Int с последующей evalf:

Поделиться:
Популярные книги

Курсант: назад в СССР 2

Дамиров Рафаэль
2. Курсант
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Курсант: назад в СССР 2

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Ведьма и Вожак

Суббота Светлана
Фантастика:
фэнтези
7.88
рейтинг книги
Ведьма и Вожак

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Провинциал. Книга 3

Лопарев Игорь Викторович
3. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 3

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Вираж бытия

Ланцов Михаил Алексеевич
1. Фрунзе
Фантастика:
героическая фантастика
попаданцы
альтернативная история
6.86
рейтинг книги
Вираж бытия

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

Я – Орк

Лисицин Евгений
1. Я — Орк
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я – Орк

Совок 9

Агарев Вадим
9. Совок
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Совок 9

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Тринадцатый III

NikL
3. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый III