Чтение онлайн

на главную

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

hypersum(U, L, z, n) и Hypersum(U, L, z, n) — вычисление гиперсумм;

sumtohyper(f, k) и Sumtohyper(f, k) — преобразование сумм в гиперсуммы;

extended_gosper(f, k), extended_gosper(f, k=m..n) и extended_gosper(f, k, j) — реализация расширенного алгоритма Госпера;

gosper(f, k) и gosper(f, k=m..n) — реализация алгоритма Госпера;

hyperrecursion(U, L, z, s(n)) — реализация гиперрекурсионного алгоритма;

hyperterm(U, L, z, k) и Hyperterm(U, L, z, k) — ввод гипергеометрического терма.

4.1.7. Примеры вычисления специальных сумм

Приведем примеры на вычисление специальных сумм с помощью функций пакета sumtools (файл sumtools):

> extended_gosper(k*(k/2)!, k);

> extended_gosper(k*(k/2)!,k,2);

> extendedgosper(k*(k/2)!,k=1..n);

> gosper(k*(k/2)!,k);

FAIL

> gosper(pochhammer(k,n),k);

> hyperrecursion([-n,a],[b],1,f(n));

(-n + a = b + 1)f(n - 1) + (n + b - 1)f(w)

> Hypersum([a,1+a/2,b,c,d,1+2*a-b-c-d+n, -n],

[a/2,1+a-b,1+a-c,1+a-d,1+a-(1+2*a-b-c-d+n),1+a+n],1,n);

Hyperterm([1, 1+a, a-d-c+1, a+1-d-b, a-с+1-b], [1+a-d, 1+a-c, 1+a-b, a-b-c-d+1, 1, n])

> simpcomb(binomial(n,k));

> sumrecursion(binomial(n,k)^3,k, f(n));

– 8(n - 1)²f(n - 2) - (7n² - 7n + 2)f(n - 1) + f(n)n²

> hyperterm([a,b], [c],z,k);

Из

этих примеров применение функций данного пакета достаточно очевидно.

4.2. Вычисление произведений членов последовательностей

4.2.1. Основные функции для произведения членов последовательностей

Аналогичным образом для произведений членов f(i) некоторой последовательности, например вида

используются следующие функции:

product(f, k);

product(f, k=m..n);

product(f, k=alpha);

Product(f, k);

Product(f, k=m..n);

Product(f, k=alpha).

Обозначения параметров этих функций и их назначение соответствуют приведенным для функций вычисления сумм. Это относится, в частности, и к применению одиночных кавычек для f и k.

4.2.2. Примеры вычисления произведений членов последовательностей

Примеры применения функций вычисления произведений даны ниже (файл product):

> restart;

> Product(k^2,k=1..5)=product(k^2, k=1..5);

> Product(k^2, k)=product(k^2,k)

> product(а[k],k=1..5);

a1 а2 а3 а4 a5

> f:= [1, 2, 3, 4, 5];

f:=[1, 2, 3, 4, 5]

> product(f[k],k=1..4);

24

> product(n+k,k=1..4);

(n + 1)(n + 2)(n + 3)(n +4)

> Product(n+k,k=1..m)=product(n+k,k=1..m);

> product(k,k=RootOf(x^3-9));

9

Как и в случае вычисления сумм, вычисление произведений возможно как в численной, так и в аналитической форме — разумеется, если таковая существует. Это показывают следующий пример:

> Product(2/i,i=1..infinity)=product(2/i,i=1..infinity);

Нетрудно понять, что при i, стремящемся к бесконечности, перемножаемые члены последовательности стремятся к нулю, а потому к нулю стремится и их произведение.

4.3. Вычисление производных

4.3.1. Определение производной и полного дифференциала

Если f(x) непрерывная функция аргумента х, то производная этой функции

 

(4.1)

Как известно, значение производной геометрически характеризуется наклоном касательной к графику f(х) в точке x=0. Простейший способ наблюдать построение касательной к заданной точке функции заключается в применении функции showtangent из пакета student. Например, команды

> with(student): showtangent(sin(x), x = 1.7);

строят график синусоиды и касательной к ней в точке х=1.7.

Помимо производной, часто встречается понятие дифференциала

df(x) =f'(x)∙∆x,

то есть произведения производной функции на приращение ее аргумента Δx→0.

Производная от производной f(x), то есть функция f''(x) называется производной второго порядка. Могут быть производные третьего, четвертого и так далее, словом производные высшего порядка. Все математические системы способны вычислять такие производные, как и первую производную f'(x) от функции f(x).

Поделиться:
Популярные книги

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Жандарм 3

Семин Никита
3. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 3

Тринадцатый IV

NikL
4. Видящий смерть
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Тринадцатый IV

Отмороженный 4.0

Гарцевич Евгений Александрович
4. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 4.0

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

В тени большого взрыва 1977

Арх Максим
9. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В тени большого взрыва 1977

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Возвращение Безумного Бога 2

Тесленок Кирилл Геннадьевич
2. Возвращение Безумного Бога
Фантастика:
попаданцы
рпг
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 2

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

На границе империй. Том 9. Часть 4

INDIGO
17. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 4

Теневой путь. Шаг в тень

Мазуров Дмитрий
1. Теневой путь
Фантастика:
фэнтези
6.71
рейтинг книги
Теневой путь. Шаг в тень

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь