Maple 9.5/10 в математике, физике и образовании
Шрифт:
hypersum(U, L, z, n) и Hypersum(U, L, z, n) — вычисление гиперсумм;
sumtohyper(f, k) и Sumtohyper(f, k) — преобразование сумм в гиперсуммы;
extended_gosper(f, k), extended_gosper(f, k=m..n) и extended_gosper(f, k, j) — реализация расширенного алгоритма Госпера;
gosper(f, k) и gosper(f, k=m..n) — реализация алгоритма Госпера;
hyperrecursion(U, L, z, s(n)) — реализация гиперрекурсионного алгоритма;
hyperterm(U, L, z, k) и Hyperterm(U, L, z, k) — ввод гипергеометрического терма.
4.1.7. Примеры вычисления специальных сумм
Приведем примеры на вычисление специальных сумм с помощью функций пакета sumtools (файл sumtools):
Из
4.2. Вычисление произведений членов последовательностей
4.2.1. Основные функции для произведения членов последовательностей
Аналогичным образом для произведений членов f(i) некоторой последовательности, например вида
используются следующие функции:
Обозначения параметров этих функций и их назначение соответствуют приведенным для функций вычисления сумм. Это относится, в частности, и к применению одиночных кавычек для f и k.
4.2.2. Примеры вычисления произведений членов последовательностей
Примеры применения функций вычисления произведений даны ниже (файл product):
Как и в случае вычисления сумм, вычисление произведений возможно как в численной, так и в аналитической форме — разумеется, если таковая существует. Это показывают следующий пример:
Нетрудно понять, что при i, стремящемся к бесконечности, перемножаемые члены последовательности стремятся к нулю, а потому к нулю стремится и их произведение.
4.3. Вычисление производных
4.3.1. Определение производной и полного дифференциала
Если f(x) непрерывная функция аргумента х, то производная этой функции
Как известно, значение производной геометрически характеризуется наклоном касательной к графику f(х) в точке x=0. Простейший способ наблюдать построение касательной к заданной точке функции заключается в применении функции showtangent из пакета student. Например, команды
строят график синусоиды и касательной к ней в точке х=1.7.
Помимо производной, часто встречается понятие дифференциала
то есть произведения производной функции на приращение ее аргумента Δx→0.
Производная от производной f(x), то есть функция f''(x) называется производной второго порядка. Могут быть производные третьего, четвертого и так далее, словом производные высшего порядка. Все математические системы способны вычислять такие производные, как и первую производную f'(x) от функции f(x).