Чтение онлайн

на главную

Жанры

Математические головоломки и развлечения

Гарднер Мартин

Шрифт:

Рис. 208 При раздувании шаров, образующих плотную упаковку, они превращаются в додекаэдры.

Если трапецеромбический додекаэдр разрезать пополам показанной на рисунке плоскостью и одну из половинок повернуть на 60° относительно другой, то получится ромбический додекаэдр.

В 1727 году английский физиолог Стифен Хейлз описал в своей книге «Статистика растений» один опыт: насыпав в горшок зеленых горошин, он подверг их сжатию и получил «весьма правильные додекаэдры». Этот опыт получил название «горошин Бюффона» (потому что несколько позднее такой же опыт описал Бюффон).

У большинства

биологов он не вызывал никаких сомнений до тех пор, пока Эдвин Б. Мацке, ботаник из Колумбийского университета, не повторил его. Из-за неправильной формы, неодинаковых размеров, неоднородной плотности и случайного расположения насыпанных в контейнер горошин их форма после сжатия оказалась настолько случайной, что ее трудно было отнести к какому-нибудь определенному типу многогранников. В 1939 году появилось сообщение о новых экспериментах Мацке: он сжал свинцовую дробь и обнаружил, что при кубической упаковке дробинок образуются ромбические додекаэдры, а при случайной упаковке преобладают четырнадцатигранники неправильной формы. Мацке указал, что полученные им результаты имеют важное значение для исследования таких структур, как пена или живые клетки в недифференцированных тканях.

Задача о плотнейшей упаковке наводит на мысль о прямо противоположном вопросе: какую упаковку можно назвать редчайшей, то есть при каком расположении шаров в пространстве достигается минимум плотности? Чтобы вся структура была жесткой, каждый шар должен касаться по крайней мере четырех остальных, а точки касания не должны лежать в одном полушарии или на одном экваторе. В книге «Наглядная геометрия» Д. Гильберта и С. Кон-Фоссена [62] описана упаковка, которую в то время считали редчайшей. Ее плотность составляла 0,123. Однако уже в следующем году голландские математики Г. Хееш и Ф. Лейвз сообщили подробности более редкой упаковки с плотностью всего лишь 0,0555 (рис. 209).

62

Гильберт Д, Кон-Фоссен С. Наглядная геометрия: 2-е изд. — М. — Л.: Гостехтеоретиздат, 1951.

Рис. 209 Редкая упаковка Хееша и Лейвза. Большие шары сначала располагают так, как показано на левом рисунке, а затем каждый из больших шаров заменяют тремя маленькими. Результат показан на рисунке справа. Плотность такой упаковки составляет всего лишь 0,0555.

Существует ли еще более редкая упаковка? Вот еще один интересный вопрос, который так же, как и вопрос о плотнейшей упаковке, пока еще остается нерешенным.

* * *

Единственность ответа (4900 ядер) в задаче о числе шаров, которые можно уложить и в виде квадрата, и в виде четырехугольной пирамиды, была доказана Г. Н. Уотсоном A918). Предположение о единственности ответа высказал еще в 1875 году французский математик Эдуард Люка. Аналогичное предположение можно найти у Г. Дьюдени A917).

Числам, которые одновременно являются и треугольными и квадратными, посвящена обширная литература. Известна формула для n– го квадратно-треугольного числа:

Вопрос о плотнейшей решетчатой упаковке шаров решен для всех пространств, размерность которых не превышает восьми. [63] В трехмерном пространстве ответ на вопрос дают описанные нами кубическая и гексагональная упаковки с плотностью 0,74… При переходе к девятимерному пространству, как замечает К. Рейд в своей книге «Введение в высшую математику» A959), задача претерпевает одно из тех неожиданных загадочных превращений, которые столь часто встречаются в геометрии многомерных евклидовых пространств. Насколько мне известно, задача о плотнейшей упаковке гиперсфер в девятимерном пространстве никем еще не решена. Девятимерное пространство служит поворотным пунктом и в тесно связанной с проблемой упаковки задаче о числе одинаковых сфер, касающихся одной и той же сферы того же радиуса. Лишь в 1953 году К. Шютте и Б. Л. Ван-дер-Варден впервые доказали, что для трехмерного пространства ответ равен 12. [64] Более позднее доказательство можно найти в статье Дж. Лича «Задача о тринадцати сферах». [65] Соответствующая задача на плоскости имеет очевидный ответ: 6 (ровно столько одинаковых монет — но не больше! — могут касаться одной и той же монеты). Если прямую рассматривать как «вырожденную сферу», то ответ для одномерного пространства равен 2. Для четырехмерного пространства доказано, что 24 гиперсферы могут касаться одной и той же двадцать пятой гиперсферы, а для пространств размерности 5, 6, 7 и 8 максимальное число гиперсфер равно соответственно 40, 72, 126 и 240. Для девятимерного пространства задача остается нерешенной.

63

Proceedings of Symposia in Pure Mathematics, 7, Am. Math. Soc., 1963, pp. 53–71.

64

'Math. Ann., 125, 1953, pp. 325–334.

65

Mathematical Gazette, 40, № 331, February 1956, pp. 22–23.

Ответы

Наименьшее число апельсинов, из которых можно сложить либо две пирамиды (тетраэдра) неодинаковых размеров, либо одну большую пирамиду-тетраэдр, равно 680. Это тетраэдрическое число можно представить в виде суммы двух меньших тетраэдрических чисел: 120 и 560. Вдоль ребер пирамид можно уложить 8, 14 и 15 апельсинов.

В квадратную коробку с основанием 10 см2 и высотой 5 см стальные шарики диаметром 1 см можно плотно уложить многими способами, и в зависимости от способа укладки коробка будет вмещать различное число шаров. Максимальная емкость — 594 шарика — достигается следующим образом. Перевернув коробку на бок, нужно уложить первый слой шариков. Первый ряд должен состоять из 5, второй — из 4, третий — снова из 5, четвертый — снова из 4 и т. д. шариков. Всего получится одиннадцать рядов (шесть рядов по пяти шариков в каждом и пять рядов по четыре шарика в каждом).

На все ряды первого слоя у вас уйдет 50 шариков, а незаполненная полоска вдоль стенки коробки будет иметь в ширину около 0,3 см.

Второй слой также должен состоять из одиннадцати рядов. Первый и последний ряды содержат по четыре шарика, остальные — попеременно то пять, то четыре шарика. Во втором слое умещается всего лишь 49 шаров. (Последний ряд на 0,28… см выступает над последним рядом первого слоя, но, поскольку эта величина меньше оставшегося после укладки первого слоя зазора в 0,3 см, все шары второго слоя умещаются в коробке.) Всего в коробку входит двенадцать слоев (общей высотой 9,98… см), состоящих попеременно то из 50, то из 49 шариков, то есть 594 шарика.

Глава 41. ТРАНСЦЕНДЕНТНОЕ ЧИСЛО «ПИ»

«Лицо Пи было скрыто маской. Все понимали, что сорвать ее, оставшись при этом в живых, не сможет никто. Сквозь прорези маски пронзительно, безжалостно, холодно и загадочно смотрели глаза», — так писал в своей книге «Кошмары выдающихся личностей» Бертран Рассел.

Отношение длины окружности к ее диаметру, которое древние греки обозначили буквой π («пи»), возникает во многих ситуациях, не имеющих никакого отношения к окружностям. Английский математик Август де Морган назвал как-то «пи» «…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу».

Приведем лишь один пример. Рассмотрим множество целых положительных чисел. Если из них случайным образом выбрать два числа, то какова вероятность того, что выбранные числа не будут иметь общего делителя? Ответ неожидан: искомая вероятность равна 6/π2. Тем не менее именно то обстоятельство, что π связано с окружностью, сделало его наиболее известным представителем бесконечного класса трансцендентных чисел.

Что такое трансцендентное число? По определению трансцендентным называют число, которое не является корнем никакого алгебраического уравнения с рациональными коэффициентами. Квадратный корень из 2 —число иррациональное, но это — «алгебраическое иррациональное» число, потому что — это—«алгебраическое иррациональное» число, потому что корень из 2 есть корень квадратного уравнения х2 — 2 = 0. Число π не может быть корнем ни одного алгебраического уравнения с рациональными коэффициентами, оно получается в результате некоторого предельного перехода. Дробная часть десятичной записи числа тг, как и у всех иррациональных чисел, бесконечна и непериодична.

Поделиться:
Популярные книги

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Аватар

Жгулёв Пётр Николаевич
6. Real-Rpg
Фантастика:
боевая фантастика
5.33
рейтинг книги
Аватар

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Рухнувший мир

Vector
2. Студент
Фантастика:
фэнтези
5.25
рейтинг книги
Рухнувший мир

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Дядя самых честных правил 6

«Котобус» Горбов Александр
6. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 6

Возвышение Меркурия. Книга 4

Кронос Александр
4. Меркурий
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Возвышение Меркурия. Книга 4