Чтение онлайн

на главную - закладки

Жанры

Математика от А до Я: Справочное пособие (издание третье с дополнениями)
Шрифт:

При разрушении атмосферной инверсии температуры и появлении ветра вся накопленная активная масса полютанта будет распространяться и рассеиваться в направлении ветра в соответствии с параметрами устойчивости атмосферы по траектории движения загрязненных воздушных масс.

Следует иметь в виду, что замена реальных выбросов на некоторые эквивалентные может привести к появлению некоторых ошибок. Например, не вполне корректно продолжительный выброс превращать в эквивалентный кратковременный, при котором не учитывается разбавление примеси вследствие изменения направления ветра за время протекания аварии. Для корректного решения задачи с учетом сложной конфигурации вторичного атмосферного источника последний разбивается на совокупность одиночных «простых» — объемных или площадных источников с заданной интенсивностью

выброса. Это позволяет провести расчет суммарного поля концентраций от скомбинированного таким образом вторичного атмосферного источника по существующим методикам, заменив его суперпозицией одиночных источников.

Рис. 3.31. Распределение концентраций хлористого водорода в секторе распространения примесей при подрыве 3-х ракет РСД-10, 1,2 — расчет, 0 — экспериментальные данные при ликвидации 22.03.1988 г. в слабоустойчивой атмосфере.

В случае, когда облако, образовавшееся при кратковременном выбросе, перемещается по траектории движения воздушных масс, переходя из зоны одной категории устойчивости атмосферы в другую, представляется возможным использование следующего методического приема. Сечение поля концентраций облака, полученное при одних метеоусловиях, трансформируется во вторичный атмосферный источник с разбиением на единичные источники. Расчет концентраций от совокупности выбросов этих источников производится уже при других метеоусловиях (например, по методике МАГАТЭ [81]).

Глава IV

Примеры построения математических моделей опасных атмосферных явлений

Математическое моделирование физических характеристик атмосферных образований при аварийных ситуациях разной природы и с рабочими телами разных видов является составной частью более общей проблематики математического моделирования в экологии, развитие которой в последние годы получило мощный импульс [18–23]. Эта отрасль знаний — достаточно обширная область исследования и по выбору объектов моделирования, и по набору методов, и по спектру решаемых задач. Предлагаемые читателю в этом разделе примеры построения математических моделей атмосферных выбросов не претендуют на охват всех аспектов моделирования поставленной проблемы. Они обращают внимание на наиболее продуктивный и перспективный, по нашему мнению, метод — моделирование с помощью дифференциальных уравнений.

Этот метод, как и любой другой, безусловно, обладает своими достоинствами и недостатками. В частности, дифференциальные или разностные уравнения позволяют описывать динамику процессов в режиме реального времени, тогда как вариационные методы, как правило, предсказывают лишь конечное стационарное состояние системы или сообщества. Но на пути имитаций физических процессов с помощью уравнений возникают трудности как принципиального, так и технического характера.

Принципиальная трудность состоит в том, что не существует систематических правил вывода самих уравнений. Процедуры их составления основываются на полуэмпирических закономерностях, правдоподобных рассуждениях, аналогиях и искусстве составителя модели. Технические трудности связаны с высокой размерностью задач по моделированию сообществ. Для существенно многовидовых сообществ, потребляющих многочисленные ресурсы, требуется подбор сотен коэффициентов и анализ систем из десятков уравнений. При работе с системами из десятков и более дифференциальных уравнений оказывается, что проследить причинные связи для отладки, исключения ошибок и интерпретаций результатов в системе уравнений также сложно, как и в реальной экосистеме. В конце концов, оказывается, что исследователь не может быть уверенным, чему он обязан полученными результатами: реальному положению вещей, ошибкам в исходных данных, недочетам алгоритма или еще чему-либо. Модели, основанные на экстремальных принципах, как правило, преодолевают тупиковую ситуацию размерности, но сохраняют произвол в выборе самих исходных принципов [173].

В общем случае важнейшими этапами аналитического моделирования является формирование концепции модели и составление уравнений, описывающих

поведение системы; при этом происходит упрощение реальности, которое, однако, не должно влиять на наиболее существенные свойства реальной системы. Затем идет параметризация, т. е. определение количественных значений параметров. Осуществление этой задачи возможно тремя способами:

— получением предварительных оценок значений параметров на основе наблюдений;

— нахождением комбинаций параметров, отвечающих моделируемой ситуации, базирующимся на методах оптимизации параметров;

— оценкой роли параметров модели с помощью анализа чувствительности, целью которого является определение того, как модель реагирует на изменение значений параметров и, как следствие, того, насколько правильно оценены параметры.

Следующий шаг аналитического моделирования — имитация, т. е. получение с помощью ЭВМ решения модельных уравнений при фиксированных значениях параметров и начальных условиях. И, наконец, испытание модели или, другими словами, ее верификация — сравнение ее выходных параметров с выходными данными системы.

Различают два способа испытания: проверка самой модели, состоящая в качественном или количественном сравнение данных, полученных в результате моделирования, с действительными значениями и проверка значимости модели — проведение экспериментов для изучения поведения модели и системы с целью обнаружения их сходства, а также для сравнения тенденций поведения модели и системы. Выделяется также адаптивное моделирование, при котором происходит автоматическая адаптация модели к системе с помощью ЭВМ.

Ниже в качестве примеров построения математических моделей атмосферных выбросов приводятся некоторые наиболее простые и достаточно эффективные разработки. Они на сегодняшний день получили всеобщее признание, и на их основе, очевидно, могут успешно разрабатываться многочисленные вариации конкретных нештатных ситуаций и опасных аварийных явлений.

4.1. Струи

Выбросы химических и радиоактивных веществ в виде струй являются наиболее распространенными источниками загрязнений природной среды. Такие выбросы возникают практически на любом промышленном предприятии или заводе, при работе транспорта и в быту. Широко распространенными являются аварийные струйные выбросы. Знание газодинамических, геометрических и концентрационных характеристик струй является необходимым условием для составления правильного прогноза возможного загрязнения окружающей среды при их истечении.

Поведение струи газа, истекающей в спокойную среду или спутный поток, изучалось в течение длительного времени, в результате чего были созданы разнообразные методы расчета газодинамических параметров струйных течений. Отличия в условиях истечения струй, а также в параметрах среды, в которых они реализуются, приводит к тому, что разработать единую математическую модель, охватывающую все встречающиеся на практике случаи, крайне затруднительно. Как правило, математические модели и инженерные методы расчета охватывают сравнительно узкие классы струйных течений, при этом в них широко используются эмпирические зависимости. Применение эмпирических соотношений позволяет получить хорошее согласие между расчетными и экспериментальными значениями, однако их обобщение на другие типы струйных течений затруднительно или вообще невозможно.

Наиболее многочисленную группу математических моделей и инженерных методов расчета составляют работы, связанные с осесимметричными газовыми струями в спокойной среде или спутном газовом потоке. Среди этих работ следует выделить монографии Г.Н. Абрамовича [91, 92], Вулиса А.С. [93, 94], Голубева В.А. [95], Шетца Дж. [97] и Гиневского А.С. [99].

Изучению затопленых струй посвящено большое количество работ [95–99]. Однако они, как правило, используют не всегда корректно полученные уравнения относительно одного или двух макроскопических параметров среды (например, массы примеси и (или) количества движения). Кроме того, их авторы в большинстве исследований ограничиваются рассмотрением течений в лабораторных условиях и не учитывают изменений макроскопических характеристик среды с высотой. Как показывает опыт, неучет реальных метеоусловий может привести к существенным ошибкам в вычислении динамических, тепловых и геометрических характеристик струи.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Книга пяти колец. Том 4

Зайцев Константин
4. Книга пяти колец
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Книга пяти колец. Том 4

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Князь

Мазин Александр Владимирович
3. Варяг
Фантастика:
альтернативная история
9.15
рейтинг книги
Князь

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Темный Охотник 2

Розальев Андрей
2. Темный охотник
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник 2

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Перерождение

Жгулёв Пётр Николаевич
9. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Перерождение

Право налево

Зика Натаэль
Любовные романы:
современные любовные романы
8.38
рейтинг книги
Право налево

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7