Математика от А до Я: Справочное пособие (издание третье с дополнениями)
Шрифт:
где
Соотношение (4.16) в дифференциальном виде запишется так:
или после раскрывания дифференциала в левой части и использования соотношения (4.9)
Подставив
Дифференциальные уравнения (4.12), (4.13), (4.15), (4.18) дополняются соотношениями для нахождения молекулярного веса, теплоемкости и плотности газовой смеси выброса, а также уравнением состояния газа в виде
Необходимо отметить, что движение клуба в атмосфере является изобарическим. Это означает, что в любой момент времени и на каждой высоте его подъема давление газа внутри выброса в точности равно давлению окружающей среды на этой высоте, т. е. Р = Р. (4.19)
При использовании (4.19) приходим к соотношению связи плотности вещества клуба с его температурой. Оно записывается так:
4.3. Термики
Термики, в отличие от клубов, характеризуются упорядоченным круговым движением вещества относительно направления их движения. Они имеют грибовидную форму с затупленным по полусфере куполом [101] и порождаются в естественных условиях атмосферной конвекцией. Плотность вещества термика меньше плотности окружающей атмосферы, а эффекты турбулентности доминируют над эффектами вязкости.
Первоначально термик представляет собой компактный объем газа или жидкости, плотность которого отличается от плотности невозмущенной среды. Под действием сил плавучести этот объем приходит в движение, и при его обтекании воздухом возникает кольцевой вихрь. Вовлекающийся воздух из области встречного направления распределяется по боковой поверхности вихря и частично входит в него даже в тыловой области.
Следует отметить, что тороидальное вихревое движение термика отличается как от ламинарного вихревого кольца, так и от полностью турбулизованного клуба, являясь некоторым промежуточным между ними образованием. Это объясняется тем, что окружающий воздух, пришедший через близкую к оси термина область, вначале участвует в ламинарном круговом движении, а затем в области вершины термина турбулизуется, смешиваясь с фронтальным вовлекающимся потоком. Таким образом, тыловая часть термина участвует в ламинарном движении, а фронтальная в турбулентном (см. Рис. 4.1).
Возникает конус [101], вершиной которого является воображаемое «начало» термина, а половинный угол при вершине -12°. Окружающий воздух в конусе от 12° до 15° при вершине захватывается тыловой частью термина. Частицы окружающей среды вне этих конусов термином не захватываются. Отметим, что углы этих конусов меняются в зависимости от угла расширения самого термина, который может изменяться от 8° до 26°. Фактически этот диапазон углов расширения термина соответствует степени турбулизации окружающей среды.
Окружающая термин среда является безвихревой.
Циркуляция
Отметим, что образования типа терминов возникают при интенсивном «мгновенном» введении вещества иной плотности в среду. Если процесс инжекции затягивается, то турбулизация доминирует над вихреобразованием и возникает клуб — сильно перемешанный компактный объем с практически однородным распределением макроскопических характеристик.
Рис. 4.1. Структура течений среды вне и внутри термина: х — точки торможения; Н— стоки.
Источниками антропогенных терминов являются «мгновенные» взрывы, например, взрывы ядерных зарядов, конденсированных ВВ, взрывоопасных газов, перегретых жидкостей, емкостей с детонационноспособными веществами. Клубы появляются при взрывах слабодетонирующих веществ, когда процесс освобождения внутренней энергии ВВ замедляется.
Массовый характер термиков в форме всплывающих объемов нагретого воздуха проявляется жарким днем над черной пашней. Невидимые в приземном атмосферном слое термики визуализируются в компактные облачка на высоте конденсации паров воды, входящей в их состав (смотри фото). При дальнейшем всплытии эти объемы сливаются, превращаясь в облачные структуры.
Всплывание изолированных объемов газа с дефицитом плотности и их трансформация в вихревые кольца и термики достаточно хорошо изучены [47, 9-15, 30–33, 40].
В качестве математической модели явления в большинстве работ используется полная система нестационарных уравнений Навье-Стокса для сжимаемого теплопроводного газа в цилиндрических координатах r,z [38,47,120] (в отсутствие ветра движение осесимметрично). Газ предполагается совершенным, с уравнением состояния р=АрТ, атмосфера — барометрической (атмосферное давление ра (г) экспоненциально убывает с высотой, а температура Та постоянна).
Краевая задача формулируется [47] так. В цилиндрической расчетной области V(t) ={0<= r <= f (t),0<= z <=(t)} с подвижными правой f(t) и верхней (t) границами при t>0 требуется найти решение исходной системы дифференциальных уравнений, удовлетворяющее граничным и начальным условиям:
Здесь:
R0 — радиус термина, a T1 — температура в его центре при t = 0, остальные обозначения — общепринятые.
Отметим, что кроме условия «прилипания» (и = 0) на подстилающей поверхности z = 0 используется также условие «проскальзывания» -
Подвижные границы располагают достаточно далеко от термина и перемещают так, чтобы значения газодинамических величин на них можно было считать равными соответствующим параметрам невозмущенной атмосферы.