Математика в занимательных рассказах
Шрифт:
— Таких читателей не бывает.
— Ну, допустим, что они существуют. Сколько типографских литер потребовалось бы при таком условии для изящной и всякой иной литературы?
— Если считать лишь прописные и строчные буквы, обычные знаки препинания, цифры и, не забудем, шпации…
Племянница профессора вопросительно взглянула на говорившего.
— Это типографский материал для промежутков, — пояснил он, — которым наборщики разъединяют слова и заполняют пустые места. В итоге наберется не так уж много. Но для книг научных! У вас, математиков, такая масса символов…
— Нас выручают индексы, — те маленькие цифры, которые
— Если так, то потребуется, я думаю, не более сотни различных знаков, чтобы выразить печатными строками все мыслимое. [28]
— Теперь дальше. Какой толщины взять тома?
28
Напомним, что на пишущей машине имеется обычно не более 80 различных знаков. — Ред.
— Я полагаю, что можно вполне обстоятельно исчерпать тему, если посвятить ей том в 500 страниц. Считая на странице по 40 строк с 50 типографскими знаками в каждой (включаются, конечно, шпации и знаки препинания), имеем 40 x 50 x 500 букв в одном томе, т. е… впрочем, ты подсчитаешь это лучше…
— Миллион букв, — сказал профессор. — Следовательно, если повторять наши 100 литер в любом порядке столько раз, чтобы составился том в миллион букв, мы получим некую книгу. И если вообразим все возможные сочетания этого рода, какие только осуществимы чисто механическим путем, то получим полный комплект сочинений, которые когда-либо были написаны в прошлом или появятся в будущем.
Буркель хлопнул своего друга по плечу.
— Идет! Беру абонемент в твоей универсальной библиотеке. Тогда получу готовыми, в напечатанном виде, все полные комплекты моей газеты за будущие годы. Не будет больше заботы о подыскании материала. Для издателя — верх удобства: полное исключение авторов из издательского дела. Замена писателя комбинирующей машиной, неслыханное достижение техники!
— Как! — воскликнула хозяйка. — В твоей библиотеке будет решительно все? Полный Гёте? Собрание сочинений всех когда-либо живших философов?
— Со всеми разночтениями, притом, какие никем еще даже не отысканы. Ты найдешь здесь полностью все утраченные сочинения Платона или Тацита и в придачу — их переводы. Далее, найдешь все будущие мои и твои сочинения, все давно забытые речи депутатов рейхстага и все те речи, которые еще должны быть там произнесены, полный отчет о международной мирной конференции и о всех войнах, которые за нею последуют… Что не уместится в одном томе, может быть продолжено в другом.
— Ну, благодарю за труд разыскивать продолжения.
— Да, отыскивать будет хлопотливо. Даже и найдя том, ты еще не близок к цели: ведь там будут книги не только с надлежащими, но и с всевозможными неправильными заглавиями.
— А ведь верно, так должно быть!
— Встретятся и иные неудобства. Возьмешь, например, в руки первый том библиотеки. Смотришь: первая страница — пустая, вторая — пустая, третья — пустая и т. д. все 500 страниц. Это тот том, в котором шпация повторена миллион раз…
— В такой книге не может быть, по крайней мере, ничего абсурдного, — заметила хозяйка.
— Будем утешаться этим. Берем второй том: снова все пустые страницы, и только на последней, в самом низу, на месте миллионной литеры приютилось одинокое а. В третьем томе — опять та же картина, только а передвинуто на одно местечко вперед, а на последнем месте — шпация. Таким порядком буква а последовательно передвигается к началу, каждый раз на одно место, через длинный ряд из миллионов томов, пока в первом томе второго миллиона благополучно достигнет, наконец, первого места. А за этой буквой в столь увлекательном томе нет ничего — белые листы. Такая же история повторяется и с другими литерами в первой сотне миллионов наших томов, пока все сто литер не совершат своего одинокого странствования от конца тома к началу. Затем то же самое происходит с группою аа и с любыми двумя другими литерами во всевозможных комбинациях. Будет и такой том, где мы найдем одни только точки; другой — с одними лишь вопросительными знаками.
— Но эти бессодержательные тома можно ведь будет сразу же разыскать и отобрать, — сказал Буркель.
— Пожалуй. Гораздо хуже будет, если нападешь на том, по-видимому, вполне разумный. Хочешь, например, навести справку в «Фаусте» и берешь том с правильным началом. Но прочитав немного, находишь дальше что-нибудь в таком роде: «Фокус-покус, во — и больше ничего», или просто: «аааааа…» Либо следует дальше таблица логарифмов, неизвестно даже — верная или неверная. Ведь в библиотеке нашей будет не только все истинное, но и всякого рода нелепости. Заголовкам доверяться нельзя. Книга озаглавлена, например, «История Тридцатилетней войны», а далее следует: «Когда Блюхер при Фермопилах женился на дагомейской королеве»…
— О, это уж по моей части! — воскликнула племянница. — Такие тома я могла бы сочинить.
— Ну, в нашей библиотеке будут и твои сочинения, все, что ты когда-либо говорила, и все, что скажешь в будущем.
— Ах, тогда уж лучше не устраивай твоей библиотеки…
— Не бойся: эти сочинения твои появятся не за одной лишь твоей подписью, но и за подписью Гёте и вообще с обозначением всевозможных имен, какие только существуют на свете. А наш друг журналист найдет здесь за своей ответственной подписью статьи, которые нарушают все законы о печати, так что целой жизни не хватит, чтобы за них отсидеть. Здесь будет его книга, в которой после каждого предложения заявляется, что оно ложно, и другая его книга, в которой после тех же самых фраз следует клятвенное подтверждение их истинности.
— Ладно, — воскликнул Буркель со смехом. — Я так и знал, что ты меня подденешь. Нет, я не абонируюсь в библиотеке, где невозможно отличить истину от лжи, подлинное от фальшивого. Миллионы томов, притязающие на правдивое изложение истории Германии в XX веке, будут все противоречить один другому. Нет, благодарю покорно!
— А разве я говорил, что легко будет отыскивать в библиотеке все нужное? Я только утверждал, что можно в точности определить число томов нашей универсальной библиотеки, где наряду со всевозможными нелепостями будет также вся осмысленная литература, какая только может существовать.