Математика. Утрата определенности.
Шрифт:
Вклад Декарта собственно в математику сводится не к открытию новых истин, а к введению мощного метода, который мы ныне называем аналитической геометрией(гл. V). {24} Появление аналитической геометрии технически революционизировало методологию математики.
Декарт внес заметный вклад и в естествознание, хотя по величине и значимости он несравним с достижениями Коперника, Кеплера или Ньютона. Теория вихрей Декарта (гл. III) была ведущей космологической теорией XVII в. Декарт стал основоположником философии механицизма, согласно которой все явления природы, в том числе все отправления человеческого тела (но не душа), сводятся к движениям частиц, подчиняющимся законам механики. В самой механике Декарт сформулировал закон инерции, ныне известный как первый закон Ньютона: если на тело не действуют никакие силы и оно находится в состоянии покоя, то оно будет
24
Декарт также преобразовал и модернизировал алгебраическую символику, придав математическому языку ту форму, которой придерживались элементарные учебники чуть ли не до самых последних десятилетий; это демократизировало всю математическую науку и облегчило приобщение к ней большего количества людей.
Еще одним увлечением Декарта была оптика (расчет линз). Часть «Геометрии» Декарта и вся «Диоптрика», задуманная им как приложение к «Рассуждению о методе», посвящены оптике. Вместе с Виллебродом Снеллиусом Декарт разделяет честь открытия закона преломления света,описывающего, что происходит со светом при резком изменении свойств среды, в которой он распространяется, например при переходе из воздуха в стекло или воду. Начало математизации оптики положили еще греки, но первым, кто систематически изложил оптику как математический предмет, был Декарт. Он внес также важный вклад в географию, метеорологию, ботанику, анатомию (он собственноручно производил вскрытия трупов животных), зоологию, психологию и даже медицину.
Хотя картезианская философия, т.е. философские и естественнонаучные взгляды Декарта и его последователей, в чем-то и противоречила учению Аристотеля и средневековой схоластике, в одном важном отношении Декарт все же был схоластом: все утверждения о природе сущего и реальности он строил на основе чистого разума. Декарт верил в априорные истины и в то, что разум своей силой может выработать полное знание обо всем. Так, Декарт на основе априорных рассуждений сформулировал законы движения. (Работая над биологическими и некоторыми другими проблемами, Декарт в действительности производил эксперименты и делал важные выводы из своих наблюдений. Но даже сводя явления природы к их чисто механическим проявлениям, Декарт многое сделал, чтобы избавить науку от мистицизма и оккультизма.)
Свою лепту в общее убеждение в истинности математики и математического фундамента естествознания внес и великий математик XVII в. (хотя и не столь влиятельный философ, как Декарт) Блез Паскаль (1623-1662). В отличие от Декарта, говорившего о самоочевидных для разума интуитивных понятиях, Паскаль говорил об истинах, воспринимаемых душой. Истина должна быть либо «самоочевидной» для души, либо логическим следствием подобных истин. В своих «Мыслях» Паскаль сообщает нам следующее:
Наше знание первых принципов, таких, как пространство, время, движение, число, достоверно, как всякое знание, получаемое нами путем умозаключений. В действительности же это знание дает нам душа, и инстинкт есть необходимый фундамент, на котором наш разум строит свои заключения. Требовать от души доказательства первых принципов, прежде чем согласиться принять их, для разума столь же бессмысленно и абсурдно как для души требовать интуитивного представления о всех утверждениях, доказываемых разумом, прежде чем принять их.
Для Паскаля наука — это исследование сотворенного богом мира. Заниматься наукой ради удовольствия дурно. Видеть конечную цель науки в удовольствии означает совращать исследование с истинного пути, ибо при таком подходе тот, кто занимается наукой, обретает «голод или тягу к учению, ненасытную жажду знаний». {25} «Такое занятие наукой проистекает из априорного взгляда на себя как на центр всего, а не из стремления искать во всех окружающих явлениях природы присутствие бога и его славу».
25
Характерно, что в последние годы своей жизни Паскаль (как позже и Ньютон) полностью оставил науку, целиком обратившись к теологии и моральной философии. Нам кажется, что равный вклад, внесенный в науку XVII в. рационалистами (Галилей, Декарт, Гюйгенс, Лейбниц), верящими во всемогущество человеческого разума, и мистиками (Кеплер, Паскаль, Ньютон), более полагающимися на озарение, чем на строгую логику, напоминает об ограниченности формально-логического подхода к природе и о существовании двух взаимно-дополнительных путей постижения истины: дискурсивного и интуитивного (по этому поводу см. например, [32]).
Среди выдающихся мыслителей, стоявших у колыбели современной математики и естествознания, Галилео Галилей (1564-1642) занимает столь же почетное место, как и Декарт. Разумеется, Галилей также разделял убеждение, что природа сотворена по математическому плану и что творцом плана был сам господь бог. Широкую известность получил следующий отрывок из небольшого сочинения Галилея «Пробирных дел мастер» (1623):
Философия природы написана в величайшей книге, которая всегда открыта перед нашими глазами, — я разумею Вселенную, но понять ее сможет лишь тот, кто сначала выучит язык и постигнет письмена, которыми она начертана. А написана эта книга на языке математики, и письмена ее — треугольники, окружности и другие геометрические фигуры, без коих нельзя понять по-человечески ее слова: без них — тщетное кружение в темном лабиринте. {26}
26
Сегодня нас может удивить, что Галилей считал «буквами» того языка, на котором записаны все законы природы, «треугольники, окружности и другие геометрические фигуры». Но ведь единственной математикой, доступной Галилею, была геометрия древних греков, а до открытия дифференциального и интегрального исчисления (в значительной степени стимулированного трудами Галилея) и возникновения концепции дифференциального уравнения оставалось еще больше с полвека.
Итак, природа проста и упорядоченна, и все происходящее в ней закономерно и необходимо. Природа действует в соответствии с совершенными и неизменными математическими законами. Источником всего рационального в природе является божественный разум. Бог вложил в мир строгую математическую необходимость, которую люди постигают лишь с большим трудом, хотя их разум устроен по образу и подобию божественного разума. Следовательно, математическое знание не только представляет собой абсолютную истину, но и священно, как любая строка Священного писания. Исследование природы — занятие столь же благочестивое, как и изучение Библии. «В действиях Природы господь бог является нам не менее достойным восхищения образом, чем в божественных стихах Писания».
В «Диалоге о двух главнейших системах мира —птолемеевой и коперниковой» (1632) Галилей утверждал, что в математике человек достигает вершины всякого знания, ничуть не уступающего тому знанию, которое является уделом божественного разума. Конечно, божественный разум знает и воспринимает бесконечно больше математических истин, чем человек, но если говорить о достоверности, то те немногие истины, которые доступны человеческому разуму, известны человеку с такой же полнотой, как и богу.
Хотя Галилей был профессором математики и придворным математиком, его главным вкладом в европейскую культуру стали не математические теоремы, а те многочисленные усовершенствования, которые он внес в научный метод. Наиболее значительным из них явился его отказ от поисков физического объяснения, которое Аристотель считал истинной целью естествознания, и переход к поиску математического описания. Различие между этими двумя принципиальными методологическими установками отчетливо видно на следующем примере. Брошенное тело падает на землю, причем падение происходит со все возрастающей скоростью. Аристотель и следовавшие его методологии средневековые ученые пытались найти причину падения тела, предположительно механическую. Вместо поиска причины Галилей описал свободное падение математическим законом, имеющим в современных обозначениях вид s = 4,9t 2,где s— расстояние (в метрах), которое тело в свободном падении пролетает за tсекунд. Эта формула ничего не говорит о том, почему тело падает, и, казалось бы, дает гораздо меньше того, что хотелось бы знать о явлении. Но Галилей был уверен, что знание природы, которого мы стремимся достичь, должно быть описательным. В своей книге «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилей устами своего героя Сальвиати утверждал:
Сейчас неподходящее время для занятий вопросом о причинах ускорения в естественном движении, по поводу которого различными философами было высказано столько различных мнений: одни приписывали его приближению к центру, другие — постепенному частичному уменьшению сопротивления среды, третьи — некоторому воздействию окружающей среды, которая смыкается позади падающего тела и оказывает на него давление, как бы постоянно его подталкивая; все эти предположения и еще многие другие следовало бы рассмотреть, что, однако, принесло бы мало пользы. Сейчас для нашего автора будет достаточно, если мы рассмотрим, как он исследует и излагает свойства ускоренного движения (какова бы ни была причина ускорения), приняв, что моменты скорости, начиная с перехода от состояния покоя, идут возрастая в том же простейшем отношении, как и время.