Математика. Утрата определенности.
Шрифт:
В теории движения небесных тел Ньютон одержал блестящую победу, доказав, что три закона Кеплера, полученные им методом проб и ошибок на основании результатов многолетних наблюдений Тихо Браге, представляют собой не что иное, как математические следствия из закона всемирного тяготения и трех законов движения. Тем самым Ньютон показал, что движение планет, которое, как полагали до него, не имеет ничего общего с движением земных тел, в действительности подчиняется тем же законам, что и движение земных тел. В этом смысле Ньютон «объяснил» законы движения планет. Кроме того, поскольку законы Кеплера согласуются с результатами наблюдений, их вывод из закона всемирного тяготения стал превосходным подтверждением правильности самого этого закона.
Те немногие следствия из законов движения и закона всемирного тяготения, о которых мы упомянули, — всего лишь небольшой пример того, что было дано свершить Ньютону. Закон всемирного тяготения он применил к объяснению непонятного
Наконец, используя приближенные методы, Ньютон решил некоторые задачи, относящиеся к движению Луны. Например, известно, что плоскость, в которой происходит движение Луны, несколько наклонена к плоскости движения Земли. Как показал Ньютон, это обусловлено взаимным притяжением Солнца, Земли и Луны, описываемым законом всемирного тяготения. Ньютон и его непосредственные преемники в науке вывели из закона всемирного тяготения так много важных следствий о движениях планет, комет и Луны, а также о колебаниях уровня моря, что на протяжении последующих двух столетий считалось, что они дали полное объяснение системы мира.
В своей грандиозной деятельности Ньютон придерживался принципа, выдвинутого Галилеем, — искать не физическое объяснение, а математическое описание. Ньютон не только свел воедино огромное число экспериментальных данных и теоретических результатов Кеплера, Галилея и Гюйгенса, но и поставил математическоеописание в основу всех своих естественнонаучных трудов и предсказаний. В предисловии к первому изданию своего основного труда, носившего весьма примечательное название «Математические начала натуральной философии» {30} , Ньютон говорит:
30
Надо иметь в виду, что под «натуральной философией природы» во времена Ньютона понимали физику,так что латинское название великого труда Ньютона можно перевести как «Математические основы физики».
Так как древние, по словам Паппуса, придавали большое значение механике при изучении природы, то новейшие авторы, отбросив субстанции и скрытые свойства, стараются подчинить явления природы законам математики.
В этом сочинении имеется в виду тщательное развитие приложений математики к физике, поэтому и сочинение это нами предлагается как математические основания физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления. Для этой цели предназначены общие предложения, изложенные в книгах первой и второй. Затем по этим силам, также при помощи математических предложений, выводятся движения планет, комет, Луны и моря.
Мы видим, что математике в «Началах» Ньютона отводится главная роль.
У Ньютона имелись все основания отдавать количественным математическим законам предпочтение перед физическим объяснением: центральным физическим понятием ньютоновской небесной механики была сила тяготения, а действие этой силы он не мог объяснить с помощью физических понятий. Представление о силе тяготения, действующей между любыми двумя массами, даже если их разделяют сотни миллионов километров пустого пространства, казалось столь же невероятным, как и многие свойства, придуманные для объяснения физических явлений последователями Аристотеля и средневековыми схоластами. Представление о дальнодействующих силах было особенно неприемлемым для современников Ньютона, упорно настаивавших на механистических объяснениях и привыкших воспринимать силу как результат непосредственного соприкосновения тел, при котором одно тело «толкает» другое. {31} Отказ от физического объяснения и прямая замена его математическим описанием явления потрясли даже великих ученых. Гюйгенс считал идею гравитации «абсурдом», поскольку действие через пустое пространство исключало всякий механизм передачи силы; он поражался тем, что Ньютон взял на себя тяжкий труд и выполнил громоздкие вычисления, которые не обосновывались — ничем, кроме математического принципа тяготения. Против чисто математического описания гравитации возражали и многие другие современники Ньютона, в том числе Лейбниц, который сразу, как только прочитал в 1690 г. ньютоновские «Начала», занял в отношении их резко критическую позицию и продолжал критиковать идею дальнодействия до самой своей смерти. Вольтер, возвратившись в 1727 г. с похорон Ньютона, с иронией заметил, что в Лондоне царит вакуум,тогда как в Париже ощущается пленум(пространство, заполненное тончайшей материей) — ведь во Франции все еще царствовала картезианская философия. Попытки объяснения феномена дальнодействия не прекращались до начала XX в.
31
Напомним, что М. Фарадей (1791-1867) и даже Д.К. Максвелл (1831-1879) в аналогичной ситуации, а именно в своем истолковании электромагнитных явлений, исходили из механистических объяснений сил притяжения и отталкивания заряженных тел, опирающихся на фиктивные «силовые трубки» в (несуществующем) эфире, что исключало необходимость апелляция к дальнодействию. [Впрочем, эти ошибочные объяснения физической природы явлений не помешали названым великим ученым пройти к правильным выводам, в частности к знаменитым уравнениям Максвелла,дающим исчерпывающее количественное описание рассматриваемых феноменов.]
И все же поразительные научные достижения Ньютона стали возможны только благодаря тому, что он всецело полагался на математическое описание даже в тех случаях, когда физическое понимание явления полностью отсутствовало. Вместо физического объяснения Ньютон дал количественную формулировку действия силы тяготения, полезную уже тем, что она имела поддававшийся проверке смысл. Именно поэтому Ньютон в первой книге «Начал» замечает: «Эти понятия должно рассматривать как математические, ибо я еще не обсуждаю физических причин и места нахождения сил». Ту же мысль он повторяет и в конце своего сочинения:
В наши намерения входило только установить величину и свойства этой силы по явлениям и применить то, что нам удалось открыть в некоторых простейших случаях, как законы, позволяющие математически оценивать действия силы в более сложных случаях… Мы говорим математически(курсив Ньютона) во избежание всяких вопросов о природе этой силы, которую мы не понимаем достаточно для того, чтобы строить какие-либо гипотезы…
В письме Ньютона преподобному Ричарду Бентли от 25 февраля 1692 г. есть такие строки:
То, что гравитация должна быть внутренним, неотъемлемым и существенным атрибутом материи, позволяя тем самым любому телу действовать на другое на расстоянии через вакуум,без какого-либо посредника, с помощью которого и через который действие и сила могли бы передаваться от одного тела к другому, представляется мне настолько вопиющей нелепостью, что, по моему глубокому убеждению, ни один человек, сколько-нибудь искушенный в философских материях и наделенный способностью мыслить, не согласится с ней. Вызывать тяготение должен некий агент, постоянно действующий по определенным законам, но материален он или нематериален, я предоставляю судить моим читателям.
Несмотря на успехи, достигнутые Ньютоном в математическом описании явлений гравитации, отсутствие понимания физического механизма этого явления продолжало волновать ученых, но все их усилия найти приемлемое объяснение не увенчались успехом. На это обстоятельство обращает внимание епископ Джордж Беркли в своем диалоге «Алсифрон, или Мелкий философ» (1732) ([21], с. 443-464):
Евфранор…Прошу тебя, Алсифрон, не играй терминами: оставь словосила, изринь все прочее из своих мыслей, и ты увидишь, какова точная идеясилы.
Алсифрон.Под силой я понимаю в телах то, что вызывает движение и другие ощутимые действия.
Евфранор.А не существует ли что-нибудь отличное от этих действий?
Алсифрон.Существует.
Евфранор.Тогда, будь добр, исключи все, что отличается, и те действия, к которым оно приводит, и поразмысли над тем, что такое сила в собственной, точной идее.
Алсифрон.Должен признаться, нелегкое это дело.
Евфранор.Поскольку ни ты, ни я не можем определить идею силы и поскольку, как ты сам заметил, разум и способности людей во многом схожи, мы можем предположить, что и у других людей нет ясного представления об идее силы.