Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Шрифт:
Считается общепринятым мнение, что истинной проверкой теории является сравнение ее предсказаний с результатами экспериментов. Однако, оглядываясь назад, можно утверждать, что успешное объяснение Эйнштейном в 1915 г. ранее измеренной аномалии орбиты Меркурия явилось значительно более существенным тестом общей теории относительности, чем проверка его вычислений отклонения света в наблюдениях во время солнечных затмений 1919 г. и далее. Таким образом, в случае общей теории относительности последующее подтверждение, т.е. вычисление уже известного аномального движения Меркурия, оказалось на самом деле более важной проверкой теории, чем предсказание нового эффекта отклонения луча света гравитационными полями [74] .
Б74
Я сделал эту заметку в моей лекции в Колумбийском университете в 1984 г. И я был очень рад увидеть, что тот же самый вывод был получен независимо историком науки; см. Brush S. Prediction and Theory Evaluation: The Case of Light Bending // Science 246 (1989): 1124.
Я думаю, что все так подчеркивают важность предсказания при проверке научных теорий, потому что стандартная точка зрения научных комментаторов заключается в том, чтобы не доверять теоретикам. Все боятся, что теоретик может подогнать свою теорию так, что она будет объяснять любые известные экспериментальные факты. Таким образом, то, что теория объясняет эти факты, не считается убедительным тестом самой
Однако, несмотря на то, что Эйнштейн еще в 1907 г. изучил вопрос об аномальной прецессии орбиты Меркурия, никто из тех, кто хоть немного знает, как строилась общая теория относительности, кто пытался вникнуть в логику Эйнштейна, не может предположить, что он занимался созданием общей теории относительности для того, чтобы объяснить эту прецессию. (Я вернусь через минуту к ходу мыслей Эйнштейна.) Часто следует не доверять именно успешному предсказанию. Правда, что в случае настоящего предсказания, вроде эйнштейновского предсказания отклонения лучей света Солнцем, теоретик не знает никаких экспериментальных данных, строя свою теорию. Но с другой стороны, экспериментатор знает теоретический результат до того, как он начинает эксперимент. А это может привести, и, как показывает история науки, приводило к искажениям из-за чрезмерного доверия к вычислениям, сделанным задним числом. Я повторяю: экспериментаторы не фальсифицируют свои данные. Насколько мне известно, в истории физики не было случая, чтобы какие-то важные данные сознательно искажались. Но если экспериментаторы знают тот результат, который они теоретически ожидают получить, то им, естественно, очень трудно прекратить поиски ошибок наблюдения, если этот результат не получается, или, наоборот, продолжать такие поиски, если обнаружено совпадение с предсказанием. То, что экспериментаторы все же не всегда получают те результаты, которые ожидают, свидетельствует о силе их характера.
Подведем предварительные итоги. Мы видели, что первые экспериментальные свидетельства в пользу общей теории относительности [75] сводились к единственному успешному вычислению задним числом аномалии в движении Меркурия, которое не было воспринято достаточно серьезно, и предсказанию нового эффекта отклонения луча света Солнцем, кажущееся успешное подтверждение которого вызвало много шума, однако на самом деле было отнюдь не таким убедительным, как в то время считалось. По крайней мере несколько ученых встретили его со скептицизмом. Только после Второй мировой войны, благодаря развитию новой радарной техники и радиоастрономии, удалось существенно продвинуться в увеличении точности этих экспериментальных тестов общей теории относительности [76] .
Б75
Должен заметить, что Эйнштейн предложил третий тест общей теории относительности, основанный на предсказываемом гравитационном красном смещении света. Брошенный с поверхности Земли вверх камень теряет свою скорость, преодолевая силу земного притяжения. Точно так же свет, испущенный с поверхности звезды или планеты, теряет энергию, улетая в открытый космос. Эта потеря энергии светом проявляется как рост длины волны и, следовательно (для видимого света), как сдвиг в красную сторону спектра. Общая теория относительности предсказывает, что относительный сдвиг для света, испущенного с поверхности Солнца, составляет 2,12 · 10– 6. Было вы сказано предложение изучить спектр света от Солнца и посмотреть, не сдвинуты ли спектральные линии на указанную величину относительно своих нормальных положений. Астрономы стали искать эффект, но поначалу ничего не обнаружили. Некоторых физиков это обеспокоило. В докладе Нобелевского комитета за 1917 г. отмечалось, что измерения К. Сентджона в обсерватории Маунт-Вильсон не обнаружили красного смещения, и делался вывод, что «эйнштейновская теория относительности не заслуживает Нобелевской премии, каковы бы ни бы ли ее достоинства в других отношениях». В 1919 г. Нобелевский комитет опять отметил красное смещение как причину, по которой вопрос об общей теории относительности откладывается. Однако большинство физиков того времени (включая самого Эйнштейна), похоже, не были слишком обеспокоены проблемой красного смещения. Сейчас мы видим, что техника, использовавшаяся в 20-е гг., не позволяла провести аккуратное измерение гравитационного красного смещения света от Солнца. Так, предсказываемое гравитационное красное смещение 2 · 10– 6могло быть замаскировано смещением, возникающим от излучающих свет конвективных потоков газов на поверхности Солнца (знакомый эффект Доплера) и не имеющим никакого отношения к общей теории относительности. Если эти газы испускаются в сторону наблюдателя со скоростью 600 м/с (что вполне возможно на Солнце), эффект полностью перекроет гравитационное красное смещение. Только в последнее время тщательное изучение света, исходящего от края солнечного диска (где конвективные потоки испускаются в основном под прямым углом к лучу зрения), привело к обнаружению гравитационного красного смещения примерно предсказываемой величины. На самом деле первые точные измерения гравитационного красного смещения использовали не свет от Солнца, а гамма-лучи (свет очень коротких длин волн), которые поднимались вверх или падали с высоты 22,6 м в башне Джефферсоновской физической лаборатории в Гарварде. Эксперимент Р. Паунда и Г. Ребки в 1960 г. обнаружил изменение длины волны гамма-лучей, которое с точностью 10 % согласовывалось с предсказаниями общей теории относительности. Через несколько лет точность была доведена до 1 %.
Б76
Особенно в работе Ирвина Шапиро из МТИ.
Сегодня можно утверждать, что предсказания общей теории относительности для отклонения (и одновременно задержки) луча света, проходящего рядом с Солнцем, для аномалий орбитального движения как Меркурия, так и астероида Икар и других естественных и искусственных тел, подтверждены с экспериментальной неопределенностью менее 1 %. Но в 1920-е гг. до этого было еще далеко.
Тем не менее, несмотря на слабость экспериментальной поддержки, теория Эйнштейна еще в 1920-е гг. вошла в стандартные учебники и с тех пор не сдавала свои позиции, невзирая на то, что разные экспедиции по наблюдению за солнечными затмениями в 1920–1930 гг. сообщали, по меньшей мере, о сомнительном согласии с теорией. Помню, что, когда в 1950-х гг., еще до появления новых впечатляющих подтверждений теории, полученных с помощью современных радаров и радиоастрономии, я изучал общую теорию относительности, я принимал как данное, что эта теория более или менее верна. Возможно, мы все были тогда доверчивы и легкомысленны, но думаю, что объяснение не в этом. Я уверен, что широкое признание ОТО было связано главным образом с привлекательностью самой теории, проще говоря с ее красотой.
Развивая общую теорию относительности, Эйнштейн следовал линии рассуждений, которую могли проследить и физики последующих поколений, желавшие разобраться в этой теории. Более того, в этих рассуждениях они увидели бы те же притягательные черты, которые в свое время привлекли внимание Эйнштейна. Историю можно проследить назад до 1905 г., annus mirabilis Эйнштейна. В этом году, одновременно с развитием квантовой теории света и теории движения малых частиц в жидкостях [77] , Эйнштейн развил новый взгляд на пространство и время, известный нам сейчас под названием специальной теории относительности. Эта теория находилась в согласии с общепринятой теорией электричества и магнетизма – электродинамикой Максвелла. Наблюдатель, движущийся с постоянной скоростью, наблюдал бы, что пространственно-временные интервалы и электромагнитные поля изменяются за счет скорости движения наблюдателя таким образом, что уравнения Максвелла остаются справедливыми (что и не удивительно, так как специальная теория относительности строилась именно так, чтобы удовлетворить этому требованию). Однако специальная теория относительности была совершенно несовместима с ньютоновской теорией тяготения. С одной стороны, в теории Ньютона сила тяготения между Солнцем и планетой зависит от расстояния между положениями этих тел, измеренными в один и тот же момент времени, а с другой стороны, в специальной
Б77
Это явление известно как броуновское движение. Оно вызвано соударениям и молекул жидкости с частицами. С помощью эйнштейновской теории броуновского движения можно использовать наблюдения этого движения для вычисления ряда свойств молекул. Кроме того, это явление помогло физикам и химикам убедиться в реальности молекул.
Имелось несколько способов так изменить теорию Ньютона, чтобы привести ее в согласие с специальной теорией относительности. Сам Эйнштейн испробовал по крайней мере один из них, прежде чем создал общую теорию относительности [78] . Ключевой идеей, с которой начался в 1907 г. путь к ОТО, стало знакомое и проверенное свойство тяготения: сила тяготения пропорциональна массе того тела, на которое она действует. Эйнштейн понял, что это напоминает свойства так называемых сил инерции, которые действуют на нас тогда, когда мы движемся с переменной скоростью или меняем направление движения. Именно сила инерции прижимает пассажиров к спинкам кресел во время разбега самолета. Другим примером силы инерции является центробежная сила, не дающая Земле упасть на Солнце. Все силы инерции, как и силы тяготения, пропорциональны массам тех тел, на которые они действуют. Мы на Земле не ощущаем ни гравитационного поля Солнца, ни центробежной силы, вызванной движением Земли вокруг Солнца, так как эти две силы уравновешивают друг друга. Однако баланс нарушился бы, если бы одна сила была пропорциональна массе объекта, на который она действует, а другая – нет. В этом случае некоторые тела могли бы падать с Земли на Солнце, а другие, наоборот, отбрасываться от Солнца в межзвездное пространство. В общем случае тот факт, что и силы тяготения, и силы инерции пропорциональны массе того тела, на которое они действуют, и не зависят более ни от каких свойств тел, позволяет ввести в каждой точке произвольного гравитационного поля «свободно падающую систему отсчета», в которой не ощущаются ни силы тяготения, ни силы инерции, так как они точно уравновешивают друг друга для любых тел. Когда мы ощущаем силы тяготения или силы инерции, это означает, что мы не находимся в свободно падающей системе отсчета. Например, на поверхности Земли свободно падающие тела ускоряются в направлении к центру Земли с ускорением примерно 10 м/с2. Мы ощущаем тяготение Земли до тех пор, пока сами не начнем двигаться вниз с тем же самым ускорением, т.е. начнем свободное падение. Эйнштейн совершил логический скачок и предположил, что если посмотреть в корень, то силы тяготения и силы инерции это одно и то же. Это утверждение Эйнштейн назвал принципом эквивалентности инерции и тяготения, или коротко принципом эквивалентности. Согласно этому принципу, всякое гравитационное поле полностью задается описанием того, какая система отсчета является свободно падающей в каждой точке пространства-времени.
Б78
Для знатоков замечу, что здесь речь идет о безмассовой скалярной теории.
Почти десять лет после 1907 г. Эйнштейн провел в поисках соответствующего этим идеям математического аппарата. Наконец ему удалось найти то, что требовалось, в глубокой аналогии между ролями гравитации в физике и кривизны в геометрии. То, что с помощью выбора подходящей свободно падающей системы отсчета можно добиться, что сила тяготения на короткое время исчезает в малой окрестности любой точки в гравитационном поле, очень похоже на свойство кривых поверхностей, заключающееся в том, что всегда можно сделать карту этой поверхности, на которой вблизи любой точки будут правильно изображены все расстояния и направления. Если поверхность кривая, то ни одна карта не способна правильно отобразить расстояния и направления везде; всякая карта большой области является компромиссом, в большей или меньшей степени искажающим расстояния и направления. Знакомая всем проекция Меркатора, используемая при создании географических карт Земли, дает достаточно точное представление об истинных расстояниях и направлениях вблизи экватора, но чудовищно искажает картину вблизи полюсов, так что в результате Гренландия распухает во много раз больше своего истинного размера. Точно так же одним из признаков того, что вы находитесь в гравитационном поле, является невозможность найти единственную свободно падающую систему отсчета, в которой везде полностью скомпенсированы гравитационное поле и эффекты инерции [79] .
Б79
Например, предположим, что мы выбрали систему отсчета, которая во всем пространстве движется с ускорением 9,8 м/с2в направлении от Техаса к центру Земли. В этой системе отсчета мы в Техасе не будем ощущать гравитационного поля, поскольку это та система отсчета, которая свободно падает в Техасе. Однако наши друзья в Австралии почувствуют двойную перегрузку по сравнению с обычным гравитационным полем, так как в Австралии такая система отсчета будет ускоряться от центра Земли, а не к центру.
Начав с этой аналогии между тяготением и кривизной, Эйнштейн пришел к выводу, что тяготение есть не что иное, как проявление кривизны пространства и времени. Для развития этой идеи ему потребовалась математическая теория искривленных пространств, обобщающая знакомую геометрию сферической двумерной поверхности Земли. Эйнштейн был величайшим физиком мира со времен Ньютона, естественно, он знал математику так же, как и большинство физиков его времени, но все же математиком он не был. В конце концов точно то, что ему требовалось, нашлось в полностью разработанной Риманом и другими математиками предыдущего столетия теории искривленных пространств. В окончательной форме общая теория относительности стала просто новой интерпретацией существовавшей математической теории искривленных пространств в терминах тяготения, дополненной полевым уравнением, определявшим кривизну, создаваемую любым данным количеством вещества и энергии. Существенно, что для Солнечной системы с ее малой плотностью и малыми скоростями движения планет общая теория относительности приводила в точности к тем же результатам, что и теория Ньютона, так что две теории отличались только крохотными эффектами вроде прецессии орбит или отклонения луча света.
У меня есть еще, что сказать дальше по поводу красоты общей теории относительности. Пока что я надеюсь, что сказал достаточно, чтобы дать читателю возможность почувствовать привлекательность этих идей. Думаю, что именно эта внутренняя привлекательность и поддерживала веру физиков в ОТО в течении десятилетий, когда данные, полученные после очередных солнечных затмений, выглядели все более разочаровывающими.
Такое впечатление еще более усиливается, если посмотреть на то, как воспринимали общую теорию относительности в первые годы ее существования до результатов экспедиции по изучению затмения 1919 г. Самым важным было то, как сам Эйнштейн воспринимал свою теорию. В открытке, адресованной более старшему теоретику Арнольду Зоммерфельду и датированной 8 февраля 1916г., Эйнштейн писал: «Вы убедитесь в справедливости общей теории относительности сразу же, как только ее изучите. Поэтому я ни единым словом не собираюсь ее защищать». Я, конечно, не могу знать, до какой степени успешное вычисление прецессии орбиты Меркурия в 1916 г. повлияло на уверенность Эйнштейна в справедливости ОТО, но ясно, что задолго до того, как он сделал это вычисление, что-то должно было укреплять его веру в идеи, которые легли в основу теории, и толкало на дальнейшую работу. Этим чем-то могла быть только привлекательность самих идей.
Не следует недооценивать такую раннюю уверенность. История науки знает бесчисленное количество примеров ученых, у которых были хорошие идеи, но они не стали их развивать в свое время, хотя через много лет обнаруживалось (часто совсем другими людьми), что эти идеи приводят к заметному прогрессу в науке. Общераспространенной ошибкой является предположение, что ученые обязательно яростно защищают собственные идеи. Очень часто ученый, выдвинувший новую идею, сам подвергает ее необоснованной или избыточной критике только потому, что если начать эту идею серьезно развивать, то тогда нужно долго и упорно работать, причем (что более важно) забросив при этом все остальные исследования.