Чтение онлайн

на главную

Жанры

Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы
Шрифт:

Проделанные в 1948 г. вычисления лэмбовского сдвига были ужасно сложными. Дело в том, что хотя вычисления и включали позитроны, но сам сдвиг представлялся в виде суммы слагаемых, каждое из которых нарушало требования специальной теории относительности, так что только окончательный ответ был с ней совместим. Тем временем Ричард Фейнман, Джулиан Швингер и Синитиро Томонага независимо разработали намного более простые методы вычислений, на каждом шаге совместимых с теорией относительности. Новая техника была использована для других вычислений, многие из которых оказались во впечатляющем согласии с опытом. Например, электрон создает в окружающем пространстве крохотное по величине магнитное поле. Это поле было первоначально вычислено в 1928 г. Дираком с помощью созданной им релятивистской квантовой теории электрона. Сразу же после конференции в Шелтер Айленде Швингер опубликовал результаты приближенных вычислений изменения величины напряженности магнитного поля электрона, связанного с процессами испускания и обратного поглощения виртуальных фотонов. С тех пор это вычисление неоднократно уточнялось [88] . Современный результат состоит в том, что за счет процессов испускания и последующего поглощения фотонов и ряда других процессов магнитное поле электрона увеличивается в 1,00115965214 раз по сравнению со старым предсказанием Дирака, не учитывающим эти процессы (ошибка приведенного значения равна ±3 в последнем знаке). Как раз в то время, когда Швингер сделал свои вычисления, группа И. Раби в Колумбийском университете экспериментально установила, что магнитное поле электрона на самом деле несколько больше старого дираковского

значения, причем на величину, предсказанную Швингером. Последний экспериментальный результат таков: магнитное поле электрона больше дираковского значения в 1,001159652188 раз (ошибка ±4 в последнем знаке). Такое количественное согласие теории и эксперимента является, вероятно, самым впечатляющим во всей современной науке. Неудивительно, что после таких успехов квантовая электродинамика в ее простейшей перенормируемой версии стала восприниматься как правильная теория фотонов и электронов. И все же, несмотря на экспериментальные подтверждения теории и даже несмотря на то, что все бесконечности в ней сокращались, если только правильно с ними обращаться, тот факт, что эти бесконечности вообще возникают, вызывал непрестанное ворчание по поводу применимости квантовой электродинамики и подобных теорий. В частности, Дирак всегда сравнивал процедуру перенормировки с заметанием мусора под ковер. Я не соглашался с Дираком и вел с ним дискуссии на конференциях в Корал Гейбл и Лейк Констанс. Учет разницы между голыми массой и зарядом и их измеряемыми значениями – это не просто трюк, позволяющий избавиться от бесконечностей. Подобную процедуру мы обязаны совершать и тогда, когда все величины конечны. Здесь нет ничего произвольного, берущегося с потолка, это просто вопрос корректного определения того, что же мы в действительности измеряем в лаборатории, когда пытаемся определить на опыте массу и заряд электрона. Я не видел ничего ужасного в бесконечных значениях голых массы и заряда [89] , если только окончательные результаты для физических величин оказываются конечными и однозначными, да еще и согласующимися с опытом. Мне казалось, что столь успешная теория, как квантовая электродинамика, должна быть более или менее правильной, хотя, возможно, и сформулированной не самым лучшим образом. Дирак оставался непоколебимым. Я до сих пор не согласен с его отношением к квантовой электродинамике, хотя не думаю, что он был просто упрямцем, требование, чтобы теория была полностью конечной, аналогично множеству других эстетических требований, которые всегда выдвигаются физиками-теоретиками.

Б88

Эти теоретические и экспериментальные результаты были опубликованы в работе Kinoshita Т. // Quantum Electrodynamics / Ed. Т. Kinoshita (Singapore: World Scientific, 1990).

Б89

В квантовой электродинамике существуют и более серьезные проблемы. В 1954 г. Мюррей Гелл-Манн и Френсис Лоу показали, что эффективный заряд электрона очень медленно возрастает с ростом энергии процесса, в котором заряд измеряется, и выдвинули гипотезу (ранее высказанную советским физиком Львом Ландау), что при некоторой очень большой энергии эффективный заряд становится бесконечным. Позднейшие вычисления показали, что эта катастрофа происходит только в рамках чистой квантовой электродинамики – теории фотонов и электронов, и нигде более. Однако та энергия, при которой возникает бесконечность, столь велика (много больше, чем вся энергия, содержащаяся в полной массе наблюдаемой Вселенной), что задолго до того, как она будет достигнута, станет невозможно игнорировать все другие сорта частиц в природе. Таким образом, даже если и есть какие-то вопросы о математической согласованности квантовой электродинамики, они сливаются с вопросом о согласованности наших квантовых теорий всех частиц и взаимодействий.

* * *

Мой третий рассказ посвящен развитию и окончательному признанию современной теории слабых ядерных сил. В повседневной жизни эти силы не так важны, как электрические, магнитные или гравитационные, но они играют существенную роль в цепочке ядерных реакций, за счет которых в сердцевинах звезд выделяется энергия и происходит образование различных химических элементов.

Впервые слабые ядерные силы обнаружились в явлении радиоактивности, открытом в 1896 г. Анри Беккерелем. В 1930-е гг. стало понятно, что в том конкретном типе радиоактивности, который обнаружил Беккерель, а именно в бета-распаде ядер, слабая ядерная сила заставляет нейтрон внутри ядра превращаться в протон, одновременно образуя электрон и еще одну частицу, известную сейчас как антинейтрино, которые вылетают из ядра. Подобный процесс не может происходить за счет сил других типов. Сильная ядерная сила, удерживающая протоны и нейтроны вместе внутри ядра, и электромагнитная сила, отталкивающая протоны внутри ядра друг от друга, не способны изменить тип этих частиц. Тем более это не может сделать гравитационная сила. Таким образом, наблюдение превращения нейтронов в протоны или протонов в нейтроны свидетельствует о новом типе сил в природе. Как следует из названия, слабые ядерные силы много слабее электромагнитных сил или сильных ядерных сил. Это вытекает, в частности, из того, что ядерный бета-распад происходит очень медленно – самые быстрые из этих распадов происходят в среднем за одну сотую долю секунды, что невероятно медленно по сравнению с типичной длительностью процессов, вызванных сильными ядерными силами, составляющей величину порядка 10– 23с.

В 1933 г. Энрико Ферми сделал первый важный шаг по пути построения теории этой новой силы. В предложенной Ферми теории слабая ядерная сила не действует на расстоянии, как гравитационная или электромагнитная силы, а превращает нейтрон в протон, одновременно создавая в той же точке пространства электрон и антинейтрино. Последовало четверть века усилий экспериментаторов, потраченных на то, чтобы связать концы с концами в теории Ферми. Главным невыясненным вопросом был вопрос о том, как слабая сила зависит от относительной ориентации спинов частиц, участвующих в процессе. В 1957 г. это было наконец установлено, и теория Ферми приняла окончательный вид [90] .

Б90

Это сделали Фейнман и Гелл-Манн, и независимо Маршак и Сударшан.

После решительного прорыва, совершенного в 1957 г., казалось, уже не осталось никаких проблем в нашем понимании слабой ядерной силы. И все же, хотя мы имели теорию, способную дать численный ответ для любого наблюдаемого на опыте явления, связанного со слабой силой, сама теория казалась физикам в высшей степени неудовлетворительной. Многие из нас в тяжких трудах пытались улучшить теорию и придать ей смысл.

Недостатки теории Ферми были связаны не с экспериментом, а с самой теорией. Прежде всего, хотя теория хорошо описывала ядерный бета-распад, она приводила к бессмысленным результатам для более экзотических процессов. Теоретики пытались задавать совершенно осмысленные вопросы, например, какова вероятность рассеяния нейтрино при столкновении с электроном. Когда же они пытались вычислить эту вероятность (принимая во внимание испускание и последующее поглощение нейтрона и антипротона), ответ оказывался бесконечным. Как вы понимаете, сами подобные эксперименты еще не были проделаны, но вычисления давали такие результаты, которые никогда не могли бы быть согласованы с каким бы то ни было опытом. Как мы уже видели, в 1930-е гг. подобные бесконечности были обнаружены Оппенгеймером и другими в теории электромагнитных сил, но в конце 1940-х гг. теоретики обнаружили, что все эти бесконечности в квантовой электродинамике сокращаются при правильном определении или «перенормировке» массы и заряда электрона. Чем больше физики узнавали о свойствах слабых сил, тем яснее становилось, что бесконечности в теории Ферми подобным образом не сокращаются – теория была неперенормируемой.

Но была и другая трудность в теории слабых сил – она содержала слишком много произвольных параметров. Существенные характеристики слабой силы более или менее непосредственно извлекались из эксперимента и могли варьироваться в широких пределах без нарушения каких-либо известных физических принципов.

В течение долгого времени, начиная со старших курсов университета, я так и сяк пытался работать над теорией слабых сил, но в 1967 г. меня увлекли проблемы сильных ядерных сил, удерживающих протоны и нейтроны внутри атомных ядер. Я пытался развить теорию сильного взаимодействия по аналогии с квантовой электродинамикой [91] . Мне казалось, что различие между сильными ядерными силами и электромагнетизмом можно объяснить с помощью явления, известного под названием нарушение симметрии (ниже я объясню, что это такое). Моя идея не сработала. Силы сильного взаимодействия в развитой мной теории были совершенно не похожи на те, которые известны нам из опыта. Но затем внезапно до меня дошло, что идеи, оказавшиеся совершенно непригодными для объяснения сильных взаимодействий, дают математическую основу теории слабой ядерной силы, содержащую все, что только можно пожелать. Я увидел возможность построения теории слабой силы, аналогичной квантовой электродинамике. Точно так же, как электромагнитная сила между зарядами, находящимися на расстоянии друг от друга, обусловлена обменом фотонами, так и слабая сила проявляет свое действие не в какой-то одной точке пространства (как в теории Ферми), а порождается обменом фотоноподобными частицами между частицами материи, находящимися в разных точках. Эти новые фотоноподобные частицы не могут быть безмассовыми как фотоны (один из аргументов заключается в том, если бы они были безмассовыми, их бы давно обнаружили), но они вводятся в теорию способом, настолько похожим на тот, благодаря которому в квантовой электродинамике возникают фотоны, что я подумал: а не будет ли такая теория перенормируемой в том же смысле, что и квантовая электродинамика, т.е. не сократятся ли все бесконечности за счет переопределения масс и других параметров теории. Кроме того, вид теории сильно зависел от положенных в основу принципов, поэтому можно было в значительной степени избежать того произвола, который существовал в предыдущих теориях.

Б91

Здесь я ссылаюсь на обобщение квантовой электродинамики, сделанное Янгом и Миллсом.

Мне удалось построить конкретный вариант подобной теории, т.е. написать определенную систему уравнений, определяющих закон взаимодействия частиц друг с другом и сводящихся в приближении малых энергий к теории Ферми. Хотя вначале у меня и в мыслях не было ничего подобного, но в процессе работы я обнаружил, что построенная мной теория оказалась не просто теорией слабой силы, развитой на базе аналогии с электромагнетизмом; эта теория оказалась единой теорией электромагнитных и слабых сил, которые, как выяснилось, суть две разные ипостаси одной и той же силы, которую сейчас принято называть электрослабой силой. Фундаментальная частица фотон, испускание и поглощение которого порождает электромагнитные силы, оказался тесными узами связан в одно семейство с другими фотоноподобными частицами, существование которых предсказывала теория: электрически заряженными частицами W, обмен которыми порождает силы, ответственные за бета-радиоактивность, и нейтральной частицей Z, о которой я расскажу чуть ниже. (Частицы W давно фигурировали в разных теориях, пытавшихся объяснить слабые силы; само обозначение W происходит от слова weak – слабый. Я выбрал для обозначения нейтральной частицы букву Z, так как эта частица имеет нулевой (zero) электрический заряд, и, кроме того, потому что Z – последняя буква в английском алфавите, а я надеялся, что эта частица будет последней в семействе). По существу, такую же теорию независимо построил в 1968 г. пакистанский физик Абдус Салам, работавший тогда в Триесте. Некоторые аспекты этой теории рассматривались в работе Салама и Джона Уорда и еще раньше в работе моего товарища по колледжу и Корнеллскому университету Шелдона Глэшоу.

Таким образом, похоже, удалось объединить слабые и электромагнитные силы. Любому хочется объяснить все больше и больше вещей с помощью все меньшего числа идей, хотя, повторю еще раз, я совершенно не понимал, куда идет дело, когда начинал свои исследования. Но при всем при этом в 1967 г. предложенная теория не давала никаких объяснений ни одной экспериментальной аномалии в физике слабых сил. Не существовало экспериментальной информации, которую могла бы объяснить эта теория, и которая ранее не была бы объяснена в рамках теории Ферми. Поэтому сначала новая теория электрослабых сил не вызвала никакого интереса. Но я не думаю, что теория не заинтересовала других физиков только потому, что не имела экспериментальной поддержки. Не менее важным был чисто теоретический вопрос о внутренней согласованности теории.

И Салам, и я высказали убеждение, что теория устранит проблемы бесконечностей при расчете процессов, обусловленных слабыми силами. Но у нас не хватило сообразительности это доказать. В 1971 г. я получил препринт работы молодого студента-старшекурсника Утрехтского университета по имени Герард ’т Хофт, в которой он утверждал, что наша теория действительно разрешила проблемы бесконечностей: при вычислении наблюдаемых величин эти бесконечности действительно сокращали друг друга, в точности так же, как в квантовой электродинамике.

Сначала работа ’т Хофта меня не убедила. Я никогда не слышал о нем, а разработанный Фейнманом математический прием, использованный в работе, незадолго до этого был мною подвергнут сомнению. Вскоре, однако, я услышал, что теоретик Бен Ли серьезно отнесся к идеям ’т Хофта и попытался получить те же результаты, используя более привычные математические методы. Я знал Бена Ли и очень его уважал – раз уж он счел, что в работе ’т Хофта что-то есть, я не должен ею пренебрегать. (Позднее Бен стал моим лучшим другом и сотрудником. Он трагически погиб в автомобильной катастрофе в 1977 г.) Более внимательно посмотрев на то, что сделал ’т Хофт, я убедился, что он действительно нашел ключ к доказательству сокращения всех бесконечностей.

Хотя все еще не существовало ни малейших экспериментальных свидетельств в пользу электрослабой теории, но именно после работы ’т Хофта она стала частью рабочего аппарата физики. Это как раз тот случай, когда можно с достаточной точностью описать уровень интереса к научной теории. Так случилось, что Институт научной информации опубликовал данные по количеству цитирований моей первой работы по электрослабой теории, как пример того, насколько анализ цитирований может быть полезен при изучении истории науки. Моя статья была опубликована в 1967 г. В том году количество ссылок на нее равнялось нулю [92] . В период 1968–1969 гг. количество ссылок опять равнялось нулю. (В это время и Салам, и я пытались доказать то, что в конце концов удалось ’т Хофту, т.е. что теория свободна от бесконечностей.) В 1970 г. на работу сослались один раз. (Я не знаю, кто это сделал.) В 1971 г., т.е. в том году, когда была сделана работа ’т Хофта, появилось три ссылки, одна из которых принадлежала ’т Хофту. В 1972 г., все еще не имея никакой поддержки со стороны эксперимента, работа внезапно получила 65 ссылок. В 1973 г. число ссылок составило 165, затем это число постепенно возрастало, пока в 1980 г. не составило 330 ссылок. Недавнее исследование того же института показало, что моя работа оказалась самой цитируемой работой по физике элементарных частиц за все предыдущие пятьдесят лет [93] .

Б92

Это не совсем точно, поскольку я упомянул эту работу в докладе на Сольвеевском конгрессе в Брюсселе в 1967 г. Однако Институт научной информации подсчитывает только статьи, опубликованные в журналах, а мое замечание было опубликовано в материалах конференции.

Б93

Более точно, это была единственная статья по физике элементарных частиц (и вообще по физике, не считая биофизики, химической физики и кристаллографии) в списке из 100 статей по всем наукам, которые чаще всего цитировались в охваченный исследованиями Института научной информации период с 1945 по 1988 гг. (Из-за войны с 1938 по 1945 г., вероятно, просто не было часто цитируемых работ по физике элементарных частиц.)

Поделиться:
Популярные книги

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Магнатъ

Кулаков Алексей Иванович
4. Александр Агренев
Приключения:
исторические приключения
8.83
рейтинг книги
Магнатъ

Лорд Системы 13

Токсик Саша
13. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 13

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Романов. Том 1 и Том 2

Кощеев Владимир
1. Романов
Фантастика:
фэнтези
попаданцы
альтернативная история
5.25
рейтинг книги
Романов. Том 1 и Том 2

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Жена на четверых

Кожина Ксения
Любовные романы:
любовно-фантастические романы
эро литература
5.60
рейтинг книги
Жена на четверых

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV

Звезда сомнительного счастья

Шах Ольга
Фантастика:
фэнтези
6.00
рейтинг книги
Звезда сомнительного счастья