Механизмы регуляции вегетативных функций организма
Шрифт:
В регуляции кровообращения, как и других функций, можно выделить три механизма регуляции: местный, гуморальный и нервный.
Местная регуляция кровообращения осуществляется в интересах функции данного органа. Организация кровеносного русла в каждом органе, особенности местной регуляции процессов микроциркуляции наилучшим образом приспособлены к его метаболизму и функции. Гуморальная и нервная регуляции, как правило, осуществляются в интересах целостного организма, и их относят к общим или системным механизмам регуляции кровообращения. Цель системной регуляции — поддержать необходимый градиент кровяного давления и эффективный кровоток во всем организме, сделать их независимыми от изменений регионарного кровообращения.
Наиболее интегральным показателем
Местная регуляция работы сердца и тонуса сосудов
К механизмам местной регуляции работы сердца относятся механизмы гетеро- и гомеометрической саморегуляции (Сарнов, Митчел, 1962).
Мышцы предсердий и желудочков при наполнении их полостей кровью во время диастолы растягиваются. Растяжение мышечных волокон как раздражитель определяет величину их ответной сократительной реакции во время систолы. Между степенью растяжения мышечного волокна во время диастолы и силой его сокращения во время систолы существует (в определенных пределах) прямая линейная зависимость. Эта зависимость была изучена и сформулирована Старлингом (1918) в виде «закона сердца»; при прочих равных условиях сила сокращений волокон миокарда является функцией их конечнодиастолической длины.
«Закон сердца» Стерлинга подтвержден впоследствии как на изолированной полоске миокарда, так и на сердце животных и человека (в последнем случае во время хирургических операций) и получил название гетерометрической саморегуляции.
Гетерометрическая саморегуляция в естественных условиях обеспечивает хорошее соответствие между величиной венозного возврата и систолического выброса крови сердцем в различных условиях жизнедеятельности (динамическая мышечная работа, изменение положения тела в пространстве и пр.), гемодинамически согласовывает работу левого и правого сердца, улучшает эффективность работы миокарда желудочков. В нормальных физиологических условиях линейные размеры полостей сердца во время диастолы увеличиваются на 15-20% и зависимость между длиной мышечного волокна и развиваемым им напряжением проявляется в наиболее оптимальных пределах.
В некоторых случаях (повышение сопротивления систолическому выбросу, учащение сердцебиений) увеличение силы и максимальной скорости систолы могут наблюдаться и на фоне неизменной исходной длины миокардиальных клеток. Такие реакции относят к гомеометрической саморегуляции сердца.
В основе гетеро- и гомеометрической саморегуляции деятельности сердца лежат внутриклеточные процессы. Мы не будем здесь разбирать весь механизм мышечного сокращения и его запуск. Отметим только, что при умеренном растяжении сердца (гетерометрическая саморегуляция) актиновые протофибриллы несколько вытягиваются из промежутков между миозиновыми протофибриллами, число активированных «поперечных мостиков», обеспечивающих формирование актомиозиновых комплексов и перемещение актиновых протофибрилл относительно миозиновых к центру саркомера, увеличивается, нарастает и степень последующего сокращения. Увеличение силы сокращений при учащении сердечного ритма (гомеометрическая саморегуляция) в основном определяется тем, что концентрация ионов кальция в межфибриллярном пространстве перед каждой систолой оказывается повышенной, так как при укорочении диастолы ионы кальция не успевают «откачиваться» во внутриклеточные депо.
Между гетеро- и гомеометрической саморегуляцией сердца существуют сложные взаимоотношения, но эти механизмы могут достаточно надежно обеспечить соответствие сердечного выброса венозному притоку.
Механизмы гетерометрической саморегуляции проявляются и в реакциях гладких мышц сосудистой стенки. «Базальный» тонус сосудов определяется структурным и миогенным факторами. Структурная часть его создается жесткой сосудистой «сумкой», образованной коллагеновыми волокнами.
Местная регуляция работы сердца и тонуса сосудов определяется не только действием физических факторов (растяжение мышечного волокна, сопротивление выбросу), но и местным действием многих химических веществ, что особенно важно в отношении гладких мышц сосудов и регуляции органного кровообращения. К таким веществам относятся некоторые метаболиты, ацетилхолин, гистамин, брадикинин, простагландины. Действие этих веществ может быть и системным, если они поступают в общий кровоток в достаточно больших количествах.
Метаболиты. Все продукты тканевого обмена — угольная, молочная, пировиноградная кислоты, продукты превращения АТФ, ионы водорода, калия, фосфорной кислоты — сосудорасширяющие агенты. Накапливаясь при усиленной функции органа (скелетные мышцы, сердце, мозг и др.), эти агенты вызывают рабочую гиперемию, а при временном прекращении кровотока — реактивную гиперемию органа или части тела. Для каждого из этих веществ характерно относительно слабое влияние на сосуды, но совместное их действие сопровождается взаимным усилением эффекта. Такое же действие на сосуды оказывает местная гипоксия и гиперосмолярность.
Ацетилхолин. В нервных окончаниях двигательных нервов соматической нервной системы, во всех парасимпатических и симпатических холинергических нервах передача возбуждения осуществляется с участием ацетилхолина. В зоне своего освобождения ацетилхолин может расширять мелкие кровеносные сосуды. Местный характер эффекта объясняется тем, что ацетилхолин быстро разрушается ферментом холинэстеразой.
Гистамин — продукт тканевого обмена, освобождающийся во всех тканях. Количество его нарастает при увеличении интенсивности обмена веществ в органе, при воспалениях, ожогах, аллергических реакциях. Так как фермент гистаминаза, разрушающий гистамин, содержится также во всех органах, гистамин оказывает только местное сосудорасширяющее действие. При обширных повреждениях тканей образуется большое количество гистамина и развивается расширение капилляров многих сосудистых областей тела. Такая реакция может сопровождаться падением общего артериального давления и развитием «гистаминного» шока.
Брадикинин — фактор полипептидной природы, обладающий сильным сосудорасширяющим действием, усиленно продуцируется при функции железистых органов. Брадикинин выделен из слюнных желез, поджелудочной железы. Предполагают, что именно этот фактор создает рабочую гиперемию секреторных органов. Возможно, что и гиперемия кожи при действии тепла в определенной степени связана с продукцией брадикинина потовыми железами.
Простагландины — группа биологически активных химических факторов, образующихся во многих органах и тканях (легкие, печень, почки, яичники, матка и др.) в результате ферментативных превращений некоторых ненасыщенных жирных кислот. Впервые выделены из мужской семенной жидкости, поэтому и получили название простагландинов. В настоящее время известны простагландины нескольких типов: Е, Р, А, В. Выраженным сосудорасширяющим действием обладают простагландины типа Е. Им придается, например, важное значение в регуляции кровотока в мозговом веществе почек.