Менеджмент. Учебник
Шрифт:
Оказывается, получение такого расписания возможно. В одном из методов исследования операций – так называемой теории расписаний – доказывается, что наименьшее суммарное время ожидания получается при составлении расписания в порядке нарастания продолжительности приема. Составим такое расписание (табл. 7.6).
Таблица 7.6
№ п/п
Фамилия (начальная буква)
Продолжительность приема, мин
Время
1
К
5
0
2
Е
10
5
3
Д
15
15
4
Б
25
30
5
Т
30
55
6
С
35
85
Суммарное время 120 мин = 190 мин =
= 2 часа = 3 часа 10 мин
Полученное оптимальное расписание позволяет уменьшить суммарное время ожидания на 1 час 10 минут. Это значительное сэкономленное время можно использовать на полезные дела.
Задача директора находит применение не только в приемной руководителя. Ведь таким же образом можно составить и расписание очередности работы станка или другого оборудования над различными деталями. Продолжительность обработки при этом бывает различной, и нужно составить расписание таким образом, чтобы суммарное время обработки оказалось наименьшим. Это, как мы видели, дает существенный временной, а значит, и экономический эффект.
Задачу директора иногда называют задачей одного станка. Ее дальнейшим развитием является задача двух станков. В чем ее суть?
Детали обрабатываются последовательно на двух станках. В табл. 7.7 показана продолжительность этой обработки для каждой из 10 деталей на двух станках. Нумерация деталей и последовательность их обработки взяты при этом произвольно.
Таблица 7.7
Номера деталей и последовательность их обработки
1
2
3
4
5
6
7
8
9
10
Продолжительность
7
3
12
14
20
4
2
9
19
6
Продолжительность обработки на станке № 2, мин
18
13
9
5
8
16
20
15
1
13
Расчет показывает, что суммарное время обработки всех деталей составляет 118 минут. Кроме того ,существует время ожидания обработки первой поданной детали на станке № 2, равное 7 минутам, и время ожидания, пока освободится станок № 2 для обработки детали № 5, равное 11 минутам. Итого – обработка всех деталей на двух станках с учетом времени ожидания продолжается 136 минут.
В теории расписаний доказывается, что в задаче двух станков для обеспечения оптимальной последовательности обработки с наименьшим временем ожидания необходимо составлять расписание, руководствуясь следующими правилами:
1) выбирается деталь с наименьшей продолжительностью обработки на одном из станков; в нашем примере это № 9;
2) выбранная деталь помещается в начало очереди, если наименьшая продолжительность обработки соответствует станку № 1, или в конец очереди, если – станку № 2; в нашем примере деталь № 9 помещается в конец очереди;