Мир астрономии. Рассказы о Вселенной, звездах и галактиках
Шрифт:
Как пишет специалист по физике Солнца Р. Нойс из Гарварда, «никакого решения проблемы солнечных нейтрино не видно». А один из ведущих современных астрофизиков, А. Камерон, прямо говорит, что именно проблема нейтрино служит предостережением о необходимости соблюдать осторожность, утверждая, что мы уже разобрались в природе недр Солнца и других звезд.
Сравнительные размеры Солнца, Земли и белого карлика.
Но гипотезы гипотезами, а Солнце упрямо светит каждый день в
Модели звезд
Перед тем как мы начнем разбираться в этом на редкость интересном вопросе, полезно познакомиться с моделями звезд. Модель звезды в принципе должна описывать температуру, давление, плотность, химический состав, состояние вещества в любой точке звезды.
Мы не можем наблюдать «внутренности» звезды, и поэтому только расчеты, основанные на использовании известных физических законов, позволяют понять «поведение» звезды, ее физику. Мы никогда не узнаем, с какой степенью приближения соответствует модель истинной структуре космического объекта — звезды. Но сопоставление моделей с данными астрономических наблюдений помогает произвести соответствующие отбраковки.
Сегодня для построения моделей используются мощные ЭВМ; работа эта сложная и кропотливая, хотя в основе ее лежит использование простых физических законов, о которых мы уже говорили. Не будем останавливаться на технике счета моделей, перейдем сразу к наиболее интересному и важному вопросу об устройстве звезд различной массы и светимости. Это будет, собственно говоря, «сухой остаток» огромной работы, начатой еще в 1921 году Эддингтоном.
Итак, верхняя часть главной последовательности.
Там, как мы помним, расположены горячие массивные звезды. Возьмем, к примеру, звезду с массой в 10 солнечных масс и светимостью в 3 тысячи раз больше, чем у Солнца. Расчеты дают следующие характеристики ее структуры.
В центре такой звезды находится конвективное ядро, радиус которого занимает примерно 0,2 от полного радиуса звезды. Причина появления конвективного ядра очевидна: лучистый перенос уже не справляется с откачкой энергии из центральных районов звезды, и поэтому должен включиться механизм конвекции. В центре звезды температура около 27 миллионов градусов, а плотность в 26 раз больше средней. В звезде 90 процентов водорода, 9 — гелия и 1 процент остальных элементов. Согласитесь, что такая звезда устроена достаточно просто, основной источник ее энергии С – N – О-цикл.
Посмотрим теперь, что представляют собой звезды, расположенные на нижней части главной последовательности. Они, разумеется, сильно отличаются от случая, который мы только что рассмотрели. Во-первых, у этих звезд (и в том числе у нашего Солнца) нет конвективного ядра, во-вторых, основной источник энергии — протон-протонный цикл. И наконец, в этих звездах есть внешняя конвективная зона, в которой содержится примерно 10 процентов всей массы звезды, если масса этой звезды составляет 60 процентов от массы Солнца. Конвективная зона образуется из-за повышенной непрозрачности слоя, начинающегося на расстоянии 0,65 от полного радиуса звезды и продолжается почти до поверхности.
Яркая
В центре звезды плотность выше средней в 20 раз, а температура, естественно, ниже, чем у более массивной звезды, — всего 8,9 миллиона градусов. Химические элементы в этой модели равномерно распределены по всей звезде.
При построении моделей Солнца была учтена неравномерность распределения водорода по радиусу, и тогда получилось, что температура в центре Солнца составляет 14,6 миллиона градусов, а плотность — 134 г/см3.
Итак, все наши модели заметно отличаются друг от друга. Каждая звезда имеет свою структуру — например ядро, или внешнюю конвективную зону. И выражение Эддингтона: «Нет ничего проще, чем звезда», — кажется уже не столь очевидным. А ведь мы пока рассмотрели лишь самые простые модели звезд. Сложности дальше будут расти, как снежный ком.
Рассмотрим, к примеру, модель звезды-гиганта, радиус которой в 21 раз больше радиуса Солнца. Пусть масса гиганта равна 1,3 массы Солнца, а светимость больше в 226 раз. При расчетах структуры такой звезды выяснилась удивительная вещь.
В центре звезды водорода нет, он весь выгорел. Там находится маленькое ядро, состоящее почти целиком из гелия. Радиус его — всего лишь одна тысячная полного радиуса звезды. Поскольку водорода там уже нет, термоядерные реакции в ядре не идут, а температура ядра (40 миллионов градусов) постоянна. Поэтому ядро называется изотермическим. Однако даже 40 миллионов градусов недостаточны, чтобы «зажечь» тройной -процесс, и источников энергии в ядре нет.
Вокруг ядра расположена тонкая оболочка, в которой идут реакции С – N – О-цикла. Толщина оболочки — чуть меньше радиуса ядра. Далее идет слой, в котором энергия переносится излучением. Толщина его составляет примерно одну пятую радиуса звезды. А далее идут наружные слои гиганта, охваченные бурной конвекцией. Они содержат около 70 процентов массы всей звезды.
Но тогда мы приходим к удивительному выводу. Небольшое ядро гиганта весит почти одну третью его часть. И его плотность составляет 3,5 · 105 г/см3. Другими словами, чайная ложка вещества ядра весит около тонны. Возникает резонный вопрос. Неужели вещество ядра красного гиганта тоже можно считать газом?
Ответ на поставленный вопрос однозначен: «Да». Но газ этот особенный, и, чтобы объяснить все его свойства, мы должны будем поговорить о том, как устроены белые карлики — широко распространенный тип звезд в нашей Галактике. Каковы их основные свойства?
Светимость их очень мала: иногда в тысячи раз меньше солнечной. В то же время масса их примерно равна массе Солнца. Но при солнечной массе эти звезды имеют размеры, сравнимые с размерами планеты.
Сразу же возникает вопрос о температуре внутри такой звезды. Если мы попробуем оценить ее по формуле T = 14(M · R