Мир математики. т 40. Математическая планета. Путешествие вокруг света
Шрифт:
В нашей культуре геометрической моделью структуры родства является генеалогическое дерево. На нем изображены отношения кровного родства и брака. На следующем дереве браки обозначены горизонтальными линиями.
Отношения между дедами, отцами, сыновьями и внуками, связывающие разные поколения, составляют вертикальную ось системы. Отношения кровного родства на уровне каждого поколения, то есть отношения, обозначенные на схеме горизонтальными линиями, —
Совокупность отношений кровного родства и свойства определяет другие отношения, которые на генеалогическом древе обозначены диагоналями. Это родственные связи между дядьями и племянниками, тестями, тещами, невестками и зятьями.
Если говорить о поле, наша система обладает двойственностью в том смысле, что в несимметричных отношениях (таких большинство) присутствуют дополняющие элементы. В отношениях между родными и двоюродными братьями и сестрами, между супругами и их родственниками дополняющие элементы необязательны. Если А — родной или двоюродный брат, супруг или родственник супруга В, то В — родной или двоюродный брат, супруг или родственник супруга А. Но в асимметричных отношениях дело обстоит иначе:
дед — внук
отец — сын
тесть — зять
дядя — племянник.
Генеалогическое древо — геометрическая модель отношений родства в том виде, в каком они понимаются в нашей культуре. Теперь составим алгебраическую модель отношений кровного родства (за исключением родных и двоюродных братьев, дядей и племянников), охватывающую пять поколений (деды, отцы, наше поколение, дети и внуки). Представители различных поколений обозначены числами: 0 обозначает поколение, к которому принадлежит читатель, отрицательные числа — предшествующие поколения (-1 — отцы, — 2 — деды), положительные числа — последующие поколения (1 — дети; 2 — внуки).
Будем предполагать, что читатель принадлежит к поколению 0. Тогда операция (—1) * (1) означает «дед моего внука», то есть я, то есть 0. Проведя аналогичные рассуждения, заполним таблицу.
Операция *, определенная в этой таблице, эквивалентна сумме цифр в соответствующем столбце и строке. Композиция отношения с самим собой обозначается символом (°) и может представлять собой исходное либо какое-то другое отношение.
Отец ° отец = дед.
Сын ° сын = внук.
Брат ° брат = брат.
Варлпири — аборигены, живущие в Австралии. Сложная структура их родственных отношений определяет модели поведения, взаимоотношений, общественной и политической организации, а также проведение ритуалов. Для варлпири, как и для других народов, все сущее связано между собой в единой картине мира, определенной мифологическими предками, которые сотворили горы и реки, флору и фауну и дали всему названия. Предки варлпири также указали, что является священным и какие ритуалы и церемонии следует проводить.
Структура родственных отношений варлпири описывается рядом правил. Каждый абориген принадлежит к одной из восьми групп. Так, группа, к которой принадлежат дети от брака, отличается от групп, к которым принадлежат родители, и определяется по материнской линии. Если мы обозначим группы числами от 1 до 8, то дочь женщины из группы 4 будет принадлежать группе 2, ее дочь — группе 3, дочь последней — группе 1. Аналогично определяются взаимосвязи между группами 5, 6, 7 и 8. Следовательно, по материнской линии существует два непересекающихся цикла четвертого порядка, {1, 4, 2, 3} и {3, 7, 6, 8}.
Циклы, определяемые по материнской линии в структуре родственных отношений австралийских аборигенов варлпири.
Еще одно правило заключается в том, что браки не могут заключаться в пределах одной группы. В следующей геометрической модели структуры родства браки обозначены пунктирными линиями.
Браки в структуре родственных отношений варлпири.
Так как группы, к которым принадлежат мужчины, определяются на основе женских, то если мужчина из группы 1 женится на женщине из группы 5, их сын будет принадлежать к группе 7. Следовательно, он женится на женщине из группы 3, а сын от их брака вновь будет принадлежать к исходной группе 1. По отцовской линии определено четыре цикла второго порядка: {1, 7}, {2, 8}, {3, 6} и {4, 3}.
Циклы, определяемые по отцовской линии в структуре родственных отношений варлпири.
Таким образом, имеем два цикла четвертого порядка по материнской линии и четыре цикла второго порядка по отцовской линии, которые в сумме охватывают все восемь групп структуры родственных отношений. Упомянутые восемь групп могут объединяться разными способами и образовывать множества, для которых определяются различные аспекты жизни в обществе. К примеру, группы, описывающие права наследования, отличаются от групп, описывающих допустимые браки или объединения для проведения каких-либо работ.
Формальное математическое описание этой структуры есть не что иное, как практическое применение понятия, которое в теории групп называется группой изометрии восьмого порядка. Чтобы проиллюстрировать эту идею, покажем, как изометрии квадрата образуют группу изометрии восьмого порядка.
Изометрия — это преобразование, не изменяющее форму и размер объектов.
На плоскости определены три изометрических преобразования: параллельный перенос, поворот и отражение (осевая симметрия). Параллельный перенос попросту меняет положение фигуры, поворот заключается во вращении фигуры вокруг неподвижной точки, называемой центром, отражение представляет собой осевую симметрию относительно отрезка. Какие из этих преобразований можно применить к квадрату так, чтобы результат преобразования совпадал с исходной фигурой?