Мир математики. т 40. Математическая планета. Путешествие вокруг света
Шрифт:
Схема складывания салфеток в трех разных кафе.
Квадратная салфетка складывается так, что линии сгиба делят прямой угол при одной из ее вершин на три равные части. Таким образом получается симметричный четырехугольник с прямым углом, углом в 30° и двумя углами в 120°.
Салфетка, сложенная в индонезийском стиле.
Долгое
Схема складывания салфетки, в которой угол накладывается на серединный перпендикуляр так, что нижняя вершина остается на своем месте.
Получится прямоугольный треугольник. Один из его катетов равен половине гипотенузы, следовательно, угол этого треугольника равен 30°. Когда мне довелось увидеть, как официантки складывают салфетки, я решил, что мое предположение справедливо — они явно прикладывали угол салфетки к середине противоположной стороны.
Однако я ошибался. Расспросив официанток, я понял, что они в самом деле применяли геометрический метод, но далекий от моих предположений, — они старались согнуть салфетку так, чтобы разделить угол при вершине в соотношении 1:2. Вместо того чтобы прикладывать угол салфетки к середине противоположной стороны, они прикладывали сторону к центру салфетки, не складывая ее. Иными словами, они проводили биссектрису оставшейся части угла, полученного при сгибе. Этот метод был внешне неотличим от моего, и я смог понять разницу, только тщательно расспросив официанток.
Математическая идея, на которой основан этот метод, такова: 3 = 1 + 2. Обозначив через R оставшуюся часть угла, полученного при сгибе А, получим:
90° = R + 2·A.
Так как мы хотим, чтобы согнутый угол совпадал с оставшимся углом, прямой угол салфетки окажется разделен на три части:
Проекция математических идей заключается в том, чтобы при помощи математики объяснить события, которые необязательно имеют математическую природу либо действительно описываются математически, но не так, как кажется. Не стоит пытаться математически объяснить мысли и действия других людей, иначе легко попасть в неловкое положение: человек, который нам покажется несведущим в математике, может оказаться гораздо более компетентным, чем многие вокруг.
Глава 5
Этноматематика в повседневной жизни
Даяки (Борнео)
Альфред Рассел Уоллес был британским натуралистом, который в середине XIX века объехал Малайский архипелаг. Современник Дарвина, Уоллес изучал флору и фауну Зондских островов и разработал теорию эволюции, весьма схожую с дарвиновской. Его труд «Путешествие на Малайский архипелаг» представляет собой одновременно отчет о результатах исследования и документальное свидетельство о жизни и обычаях некоторых племен и народов региона. Встречи с местными жителями, описанные натуралистом, помогают понять некоторые способы их мышления.
Уоллес упоминает о встрече с членами племени даяков, жившего во внутренней части острова Борнео. В то время охота за головами была чрезвычайно распространенным обычаем среди племен Юго-Восточной Азии, но туземцам были не чужды доверие и честность. Сегодня в Юго-Восточной Азии, особенно в Малайзии, Таиланде и Индонезии, достаточно часто местные жители утвердительно отвечают на вопросы, если не знают на них ответа. Уоллес отмечает, что получить от даяков точную информацию и узнать их личное мнение было непросто. Даяки считали: если они скажут, что чего-то не знают, то случайно могут солгать! Следовательно, в разговоре с даяками крайне важно знать, известен ли им предмет разговора.
Полный подсчет (Индонезия)
Уоллес посвящает целую главу рассказу о том, как раджа острова Ломбок (входит в архипелаг Зондских островов) проводил перепись населения. С точки зрения математики перепись заключается в том, чтобы установить взаимно однозначное соответствие между натуральными числами и жителями области или региона — сосчитать их. Раджа хотел определить, сколько у него подданных, причем ему нужна была не статистическая оценка, а именно точное количество. Размер податей на Ломбоке зависел от численности населения, при этом налог должен был уплатить каждый житель острова, так что раджа хотел знать, сколько денег он получит от подданных.
Он повелел найти способ, чтобы люди пересчитали себя сами, и от переписи не скрылся бы никто. При этом раджа понимал: нельзя просто приказать членам всех семейств пересчитать друг друга. Перепись нужно было провести так, чтобы люди не догадались, что это перепись, и тем более не поняли, для чего она нужна, — только так можно было обеспечить точность результатов.
Раджа решил воспользоваться культурным контекстом. Он созвал всех вождей, священников и князей и сообщил им, что видел во сне великого духа вулкана. Тот велел, чтобы раджа по горным тропам поднялся к вершине вулкана и получил там весть от духа. Так и было сделано. Раджа отправился на встречу с духом, а процессия из знатных вельмож ожидала его у подножия. Спустя три дня правитель вернулся и передал вождям и жрецам слова духа.
Тот предвещал, что населению острова угрожают ужасная чума и болезни, и для спасения нужно точно следовать указаниям духа. Дух приказал изготовить двенадцать священных крисов (кинжалов с волнистым клинком, распространенных в Юго-Восточной Азии) — по числу деревень. Для изготовления клинков каждая деревня должна прислать пучок серебряных игл — по одной игле на человека.
В случае если деревню поразят болезни, раджа отправит туда выкованный для нее крис. Если число присланных игл действительно соответствовало количеству жителей, болезнь немедленно отступит, но если деревня прислала неточное число игл, священный кинжал окажется бессильным. Так и было сделано. Когда на какую-то из деревень обрушивалась беда, жителям посылали один из священных кинжалов.
Если несчастья прекращались, значит кинжал возымел силу. Если же беды продолжались, значит люди выслали радже неверное число иголок.
Нет никаких сомнений, что точность результатов переписи удалось обеспечить благодаря знаниям местных верований и посредством косвенных угроз. Свою роль сыграла и логика, согласно которой невиновные объявлялись виноватыми: если все было хорошо, это была заслуга божества, если же дела шли плохо, в том была вина человека. В этом случае люди оказывались виновны в том, что неверно провели подсчеты.