Мир математики. т 40. Математическая планета. Путешествие вокруг света
Шрифт:
Фрагмент розы в церкви Санта-Мария-дель-Пи в Барселоне.
Все элементы этих геометрических роз имеют свое символическое значение. Оригинальные рисунки и витражи соборов на протяжении веков не раз реставрировались, и лучше всего дух оригинала удалось сохранить в Шартрском соборе и соборе Парижской Богоматери. Женское начало традиционно связывается с ночью, Луной, прошлым и оттенками синего цвета. В Шартрском соборе женское начало представлено в розе на северном фасаде, в центре которой изображена дева Мария. Мужское
Геометрия также составляет основу символических изображений персонажей.
Подобие форм или пропорции указывают на связи между деталями изображений, в которых каждый элемент играет свою роль. Не случайно и то, что розы делятся на 6, 8, 12, 16 или 24 круговых сектора или же представляют собой последовательность концентрических окружностей.
В испанском городе Сабадель в провинции Барселона есть мастерская, которая занимается исключительно витражами в свинце. Сначала мастера выполняют рисунок на бумаге в масштабе 1:10, а затем изготавливают витраж в натуральную величину. Раньше переход от чертежей к витражам выполнялся на глаз и при помощи пантографа, но сегодня в этом процессе используются новые технологии. Проектор позволяет воспроизвести выполненные на бумаге непрозрачные фигуры в натуральную величину на другой плоской поверхности.
Чтобы придать витражам желаемую форму, между соседними стеклами нужно оставлять зазор в 1,2 мм. Вместо того чтобы проводить линию с нужным зазором параллельно контурам фигуры, мастера используют ножницы с тройным лезвием, и необходимый зазор получается автоматически.
Ножницы с тройным лезвием обеспечивают нужный зазор постоянной ширины в 1,2 мм.
Два элемента рисунка соединяются с нужным зазором в 1,2 мм.
Перенос кривых также осуществляется автоматически с помощью гибкого лекала — резиновой полоски с металлическим сердечником, сохраняющей придаваемую ей форму. Гибкое лекало позволяет легко преобразовать дуги окружностей объемных фигур в отрезки той же длины на плоскости.
Гибкое лекало сохраняет придаваемую ему форму.
Еще одна геометрическая задача, с которой сталкиваются витражисты, заключается в воспроизведении пропорциональных кривых. Эта задача решается при помощи циркуля, как показано на следующей странице. Кривые пропорциональны, если заключенный между ними отрезок перпендикуляра, пересекающего обе кривые, имеет постоянную длину.
Циркуль указывает расстояние между двумя соответствующими точками пропорциональных кривых.
Циркуль указывает такое же расстояние между двумя другими точками пропорциональных кривых.
Обход кривых, расположенных на одинаковом расстоянии друг от
Пропорциональны ли две параллельные кривые? Параллельны ли две пропорциональные кривые?
В случае с ломаными линиями понятия параллельности и пропорциональности эквивалентны, так как любая ломаная есть часть многоугольника, а стороны подобных многоугольников параллельны. Это же верно и для дуг окружности. В таких случаях мысленное представление параллельных и пропорциональных кривых одинаково. Впрочем, если мы рассмотрим предельный случай, то заметим, что интуитивные представления о параллелизме и пропорциональности отличаются. К примеру, две следующие кривые параллельны в том смысле, что перпендикуляр, проведенный к первой из них в любой ее точке, будет перпендикуляром и ко второй, а часть этого перпендикуляра, заключенная между кривыми, всегда будет иметь одинаковую длину — иными словами, эти кривые располагаются на одинаковом расстоянии друг от друга. Но ни одна из них не является уменьшенной или увеличенной копией другой, как в случае с пропорциональными кривыми.
Кривая, параллельная данной, не сохраняет углы исходной кривой.
На следующем рисунке можно четко увидеть, чем отличается исходная кривая или ломаная от линии, параллельной ей и расположенной на определенном расстоянии. Существуют две траектории, или кривые, параллельные углу прямоугольника, — внешняя и внутренняя. На внешней траектории угол исчезает, на внутренней образуется петля.
< image l:href="#"/>Внутренняя и внешняя параллели углу прямоугольника.
Продолжение описанной выше задачи можно увидеть в решетке церкви Сан-Феликс в городе Сабадель: в каждую из четырех внутренних окружностей вписано еще по четыре окружности.
Фрагмент розы в церкви Сан-Феликс в городе Сабадель в провинции Барселона.
Вы видите окружность, в которую вписаны четыре окружности меньшего размера, касающиеся друг друга. Их центры определяют квадрат. В каждую из четырех окружностей вписано еще четыре окружности по такой же схеме. Если мы продолжим неограниченно вписывать окружности по этому правилу, получим последовательность. Общее число окружностей в этой последовательности, С(n), будет определяться как сумма степеней 4:
C(n) = 1 + 4 + 42 + 43 +… + 4n = (4n+1– 1)/3
Однако мастеров интересовало не столько число окружностей, сколько соотношение между их радиусами. Если мы обозначим через R радиус большой окружности, то радиусы r четырех вписанных в нее окружностей будут равны:
2R = 2r + 2r2 = > r = R/(1 + 2)
Подобная задача приведена в последней из обнаруженных на сегодняшний день сайгаку (мы уже говорили, что эта табличка была найдена в городе Тояма в 2005 году). Задача заключается в том, чтобы определить соотношение между r — радиусами восьми окружностей, расположенных в форме кольца и вписанных в другую, большую окружность, и R — радиусом большой окружности. В обобщенном варианте задачи требуется найти соотношение радиусов в случае, когда в большую окружность вписано не четыре и не восемь, а n окружностей, расположенных в форме кольца. Применив методы тригонометрии, получим решение: