Мир математики. т.3. Простые числа. Долгая дорога к бесконечности
Шрифт:
Числа Ферма
«Числами Ферма» называются натуральные числа вида:
Они обозначаются буквой F (по имени Ферма) с соответствующим индексом (n), так что F0 обозначает первое число Ферма, F1 — второе и так далее. Посчитаем значения первых пяти чисел Ферма, учитывая, что любое число
20 = 1; 21 = 2; 22 = 4; 23 = 8.
Подставляя в формулу, получим:
Ферма предположил, что все числа, полученные таким способом, являются простыми. Первые пять чисел — 3, 5, 17, 257 и 65537 — действительно простые.
Но при n = 5 получается число:
Ферма не смог определить, является ли это число простым. Но Эйлеру в 1732 г. удалось представить это число в виде произведения двух множителей:
4294967297 = 641 х 6700417.
Тем самым Эйлер показал, что гипотезы Ферма могут быть ложными. Нечто подобное произошло впервые. И хотя гипотеза оказалась ошибочной, числа Ферма продолжают играть важную роль — не только потому, что благодаря им возникли новые идеи и гипотезы, но и потому, что они оказались полезными для выявления простых чисел.
В настоящее время известно, что только первые пять чисел Ферма являются простыми. Но это вовсе не означает, что других простых чисел Ферма не существует: на самом деле их может быть бесконечное множество. Разложение на множители было проделано лишь для чисел Ферма с индексом до n = 11. Представление числа в виде произведения простых множителей является нелегкой задачей. Как мы позже покажем, эта трудность лежит в основе одного из самых популярных методов шифрования, используемых сегодня.
Не существует ни одной области классической математики, будь то дифференциальное и интегральное исчисление, дифференциальные уравнения, аналитическая и дифференциальная геометрия, теория чисел или теория рядов, в которой бы не появлялось имя швейцарского математика и физика Леонарда Эйлера (1707–1783). Он был одним из самых плодовитых математиков своего времени. После его смерти в Санкт-Петербурге его сочинения продолжают вызывать восхищение и регулярно переиздаются Санкт-Петербургской Академией наук. Швейцарская академия наук планирует опубликовать полное собрание его работ, которое составит около 90 томов.
Банкнота 10 швейцарских франков 1997 г. выпуска с портретом Эйлера и изображениями гидравлической турбины, солнечной системы и света, проходящего через линзу. Все это иллюстрирует вклад Эйлера в математику.
Эйлер всегда проявлял особый интерес к простым числам. Он составил таблицу всех простых чисел от 1 до 100 000 и нашел формулы, которые позволяли ему получать невероятные количества таких чисел. Одной из наиболее интересных является следующая формула:
х2 + х + q,
которая
Эйлер нашел все такие простые числа для q = 2, 3, 5, 7, 11 и 17. В то время математика была экспериментальной, ее целью было получение практических результатов, поэтому строгие доказательства часто отсутствовали. Однако в отличие от Ферма Эйлер не скрывал своей работы. Если у него было доказательство, он публиковал его, а если факт приводился без доказательства, значит, оно не было найдено.
Работы Эйлера привели к важным изменениям в мире математики, вызвав медленный, но неумолимый сдвиг научной мысли. Среди многочисленных достижений Эйлера есть три, которые оказали решающее влияние на дальнейшие исследования в теории простых чисел: понятия функции, бесконечных сумм и мнимых величин.
Позже мы еще вернемся к ним.
Функции
Эйлер заложил основы того, что в последующие века будет называться математическим анализом. Именно он ввел обозначение функции, f(х), которое используется и в настоящее время. Функция работает как устройство, которое преобразует числа в другие числа в соответствии с установленным правилом. (Мы имеем в виду действительные функции действительного переменного.) Например, если правило гласит, что к каждому числу нужно прибавить определенное число, например, 3, то функция записывается следующим образом:
f(х) = x + 3.
Теперь функцию можно применить к любым значениям переменной:
f(1) = 1 + 3 = 4;
f(2) = 2 + 3 = 5;
f(24) = 24 + 3 = 27;
f(0,32) = 0,32 + 3 = 3,32.
Действительные функции действительного переменного ставят в соответствие каждому действительному числу другое действительное число. Например, функция f(x) = 2х + 1 каждое значение х увеличивает в два раза и прибавляет единицу. Составим таблицу значений этой функции:
Эта таблица позволяет построить график функции по вышеуказанным координатам точек:
Это очень простой график, он представляет из себя прямую линию, построить которую можно всего по двум точкам. С другой стороны, функция вида f(х) = х2 будет иметь следующую таблицу значений:
И график этой функции уже не так легко построить:
Фактически, чем больше у нас точек, тем более точный график можно построить, но если выражение функции не является линейным, то есть если переменная х возводится в степень, большую единицы, графиком функции является кривая линия.
В некоторых случаях эта кривая известна, а в других она оказывается очень непредсказуемой и ее нельзя построить вручную. Одним из величайших достижений Эйлера является представление сложных функций в простых терминах.