Чтение онлайн

на главную

Жанры

Мир математики. т.3. Простые числа. Долгая дорога к бесконечности
Шрифт:

* * *

В настоящее время этот результат известен как «теорема о распределении простых чисел» и является одним из самых важных в истории математики. Хаотическое множество простых чисел, казалось, удалось приручить. Появилась функция для их изучения, которая со временем привела к еще более точным результатам.

Гаусс не дожил до успеха своей теоремы. И это не связано с секретностью, как часто бывало с другими

математиками. Не связано это и с подходом Ферма, который не приводил доказательств, ссылаясь на то, что они слишком длинные. У Гаусса хватило бы бумаги для любых доказательств, какими длинными они бы ни были.

Гаусс не дожил до успеха своей теоремы просто потому, что у него не было возможности ее доказать. Благодаря работам Эйлера математика поднялась на новый уровень, где теории формулировались в логической последовательности, оставив в прошлом неопределенные методы и сомнительные практики. Интуиция, являющаяся ключом к любым открытиям, должна была подкрепляться солидной теоретической основой. Доказательство теоремы стало объективным аргументом, который, благодаря простому языку чисел, приобретал статус истины.

Гипотеза Гаусса стала теоремой лишь век спустя: в 1896 г. Жак Адамар (1865–1963) и Шарль Жан Ла Валле Пуссен (1866–1962) одновременно, но независимо друг от друга доказали ее. Из всех теорем в теории простых чисел гипотеза Гаусса занимает особое место с точки зрения истории математики: не только из-за своей красоты, но и из-за огромного влияния, которое она оказала на методы исследований простых чисел.

< image l:href="#"/>

Портрет Гаусса изображен на лицевой стороне немецкой банкноты 10 марок на фоне кривой, известной как колоколообразная кривая Гаусса. На обороте банкноты изображен секстант — инструмент, который использовался при создании одной из первых геодезических сетей в мире недалеко от Гамбурга, как показано в нижнем правом углу. Понятие «геодезических», то есть кратчайших линий, соединяющих две точки на поверхности, является ключевым понятием в геометрии и еще одним научным вкладом немецкого гения.

Глава 5

Краеугольные камни

В основе современной теории простых чисел лежат три краеугольных камня: модульная арифметика, комплексные числа и теория аналитических функций. Все они, а особенно последний, требуют существенных математических знаний. Однако некоторые аспекты теории чисел можно легко понять: например, визуализацию функций в четырехмерном пространстве. Это и поможет нам оценить роль дзета-функции Римана в наведении порядка в хаотической последовательности простых чисел.

Магические суммы

Как известно, числа имеют особые символические значения, связанные с различными мистическими верованиями. В западном мире большинство таких символических значений имеет свои корни в Библии или в пифагорейской школе. «Все познаваемое имеет число. Ибо без него невозможно ничего ни понять, ни познать», — писал ученик Пифагора, греческий математик и философ Филолай из Кротона (ок. 480 г. дон. э.).

В эпоху мрачного средневековья передача «культуры чисел» свелась к

минимуму. Католическая церковь провела четкое разграничение между различными философскими концепциями мира и теми неоспоримыми принципами, которые соответствовали ее учению. Лишь одной традиции удалось в некоторой степени преодолеть эту нетерпимость: картам Таро. Хотя церковь в конце концов осудила эту систему символов, нумерология Таро сохранилась во многих текстах, которые были настолько двусмысленными, что было неясно, идет там речь о гадании или об арифметике.

Имея в основе десятичную систему счисления, нумерология Таро придавала особое значение первым девяти числам. Число 1 символизировало единство и уникальность, число 2 было символом различия и воспроизводства; число 3 представляло направление, в котором развиваются свойства двойки при добавлении единицы: 2 + 1. Аналогично число 7 представляло собой результат развития потенциала числа шесть: 7 = 6 + 1 и так далее.

Таким образом, начиная с единицы, устанавливаются основные принципы для первых девяти чисел и возможность сведения любого другого числа к одному из них. Именно здесь и появляются «магические суммы». Идея состоит в том, чтобы сложить все цифры в данном числе и таким образом свести их к одной цифре. Например, возьмем число 47 и сложим его цифры, пока не получим одну: 4 + 7 = 11 = 1 + 1 = 2. Таким образом, число 47 наследует символизм числа 2, но находится на более высоком уровне. Другой пример:

157 = 1 + 5 + 7 = 13 = 1 + 3 = 4.

Операции сложения и умножения также можно выполнить с помощью сведения к одной цифре. Например, чтобы сложить числа 248 и 386, мы сначала сведем их к одной цифре

248 = 2 + 4 + 8 = 14 = 1 + 4 = 5;

396 = 3 + 9 + 6 = 18 = 1 + 8 = 9

и сложим полученные результаты:

9 + 5 = 14 = 1 + 4 = 5.

Если мы сначала выполним сложение, а потом сведение к одной цифре, мы по лучим тот же результат:

248 + 396 = 644 = 6 + 4 + 4 = 14 = 1 + 4 = 5.

* * *

ЧИСЛА И БУКВЫ

В греческой и еврейской культурах буквы алфавита были также связаны с числами, поэтому слова могли иметь различные мистические смыслы. Процесс заключался в сложении чисел, связанных с каждой буквой. Чтобы сравнить два слова, нужно было сравнить соответствующие числа. Слово, дающее большее число, считалось более важным. По легенде превосходство Ахилла над Гектором объяснялось следующими вычислениями: слово Ахилл соответствует числу 1276, а слово Гектор — лишь 1125.

* * *

Тот же самый результат получается, когда операции выполняются в другом порядке. При умножении мы поступаем аналогично:

45 х 27 = 1215 = 1 + 2 + 1 + 5 = 9;

45 = 4 + 5 = 9;

27 = 2 + 7 = 9;

9 x 9 = 81 = 8 + 1 = 9.

Мы можем расположить первые сто натуральных чисел в таблице, в каждом столбце поместив эквивалентные числа в соответствии с указанной системой сведения к одной цифре.

Теперь мы можем сказать, что число 78 относится к группе 6, а число 93 — к группе 3. На языке современной математики эти группы называются «классами эквивалентности». Таким образом, можно говорить о «классе числа 3», «классе числа 5» и так далее.

Поделиться:
Популярные книги

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Мимик нового Мира 8

Северный Лис
7. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 8

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Бальмануг. (не) Баронесса

Лашина Полина
1. Мир Десяти
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Бальмануг. (не) Баронесса

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II

Мне нужна жена

Юнина Наталья
Любовные романы:
современные любовные романы
6.88
рейтинг книги
Мне нужна жена

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6