Музыка сфер. Астрономия и математика
Шрифт:
Это изображение миллионов галактик получено путём наложения снимков, сделанных британским телескопом Шмидта.
Однако определение расстояний до астрономических объектов является одной из самых сложных задач астрономии. Описанные методы для её решения не подходят. Более эффективным является измерение красного смещения. Известно, что все галактики с момента Большого взрыва удаляются друг от друга. Скорость, с которой галактика удаляется от нас, согласно закону Хаббла, зависит от расстояния, на котором она находится. Хаббл считал, что скорость галактики и расстояние до неё линейно зависимы, а коэффициентом этой зависимости является так называемая постоянная Хаббла, равная 71 км/с
Определить скорость галактики относительно просто: для этого достаточно изучить её спектр. На нём всегда будут наблюдаться тёмные линии поглощения, свидетельствующие о присутствии тех или иных химических элементов. Расположение этих линий будет зависеть от скорости галактики: чем выше скорость, тем ближе к красной зоне спектра будут располагаться тёмные линии. Это явление называется красным смещением.
На сегодняшний день различные группы исследователей изучают спектры сразу нескольких миллионов галактик. Их работа далека от завершения. Согласно полученным результатам, галактики выстраиваются в ряды, между которыми остаются пустые «пузыри» — иными словами, расположение галактик напоминает пену шампуня.
Две части Вселенной, структура которых в большом масштабе известна. Наша галактика изображена в центре схемы, но не потому, что она занимает какое-то особое положение во Вселенной, а потому, что в ней находится наблюдатель.
Чтобы создать модель Вселенной, нужно взять за основу её структуру, а также ввести математические уравнения, описывающие действующие в ней силы. Однако структура Вселенной — одна из величайших загадок науки. По всей видимости, в ней существует большое количество холодной тёмной материи, которая не излучает свет и не задерживает его, поэтому кажется невидимой. Однако гравитационное взаимодействие тёмной материи можно измерить. Учёные также рассматривают так называемую тёмную энергию, которая, по всей видимости, заполняет пространство.
Расширение Вселенной вызвано именно антигравитационным эффектом тёмной энергии, которая, вместе с тёмной материей, составляет большую часть Вселенной.
На долю обычной материи приходится всего 4 %. Если исходить из этих предпосылок и использовать модель Большого взрыва, то результаты моделирования будут соответствовать результатам наблюдений. Мы можем смоделировать развитие Вселенной в течение миллиардов лет и, сравнив результаты моделирования с реальностью, понять, что именно мы наблюдаем в космосе.
Так как галактики располагаются не случайным образом, вероятность того, что в определённом объёме будет находиться галактика, определяется средней плотностью Вселенной и функцией корреляции двух величин. Эта функция корреляции описывает степень концентрации галактик во Вселенной в зависимости от того, в какой области Вселенной они находятся. Функции, используемые в статистических моделях, корректируются с учётом новых результатов наблюдений. Сегодня исследования в этой области достигли крайне высокого уровня, и в них рассматриваются самые разные модели.
Фрагмент модели распределения тёмной материи во Вселенной, составленной Консорциумом Девы. При моделировании было использовано свыше 10 тысяч частиц.
Изучив красное смещение спектров галактик, в 1986 году учёные обнаружили достаточно большие отклонения, свидетельствующие
В 1989 году была открыта группа галактик под названием Великая Стена, удалённая на расстояние более 500 млн световых лет, имеющая 200 млн световых лет в ширину и всего 15 млн световых лет в глубину. В 2004 году было открыто ещё одно пустое суперпространство в созвездии Эридана, известное как Реликтовое холодное пятно, или Суперпустота Эридана, расположенное на расстоянии почти 1 млрд световых лет от нас. Существует множество других примеров, подтверждающих, что Вселенная имеет пузырьковую структуру.
Результаты этих наблюдений следует использовать с осторожностью. Необходимо учитывать, что они могут содержать ошибки, а многое на самом деле происходит вовсе не так, как нам кажется. С помощью гравитационных линз мы можем видеть астрономические объекты вовсе не там, где они находятся на самом деле.
Сегодня астрономы работают над тем, чтобы получить изображения огромных участков звёздного неба, которые помогут лучше понять эволюцию Вселенной. Для достижения значимых результатов необходимы очень большие выборки. Изучением устройства Вселенной занимаются несколько групп исследователей, которые с помощью новой информации смогут улучшить модели, применяемые сегодня.
Приложение. Для тех, кто хочет узнать больше и выполнить некоторые вычисления
Глава 1. Преобразование координат и треугольник «полюс-зенит-звезда»
Преобразование азимутальных и экваториальных координат производится по правилам сферической тригонометрии. В современной математике эти преобразования координат описываются матрицами преобразований.
На иллюстрации положение звёзды А определяется вектором, три составляющие которого определяются проекциями звезды на плоскость горизонта (плоскость ху) и ось зенит-надир (ось z). Таким образом, положение звёзды задаётся тремя координатами: х, у, z. Следовательно, в горизонтальных координатах положение звёзды А можно определить как вектор (r•cos(h)•cos(a), r•cos(h)•sin(a), r•sin(h)).
Аналогично определяется положение звёзды относительно небесного экватора (плоскости x'y') и оси мира (оси z'), то есть осей экваториальных координат х' у' z': (r•cos(D)•cos(H), r•cos(D)•sin(H), r•sin(D)). Как показано на предыдущем рисунке, мы можем перейти от координат х, у, z к координатам х' у' z' всего лишь выполнив поворот относительно оси у у которая совпадает с осью у' на угол (90°-ф), где ф — широта. В результате х перейдёт в ось х' ось z — в ось z. Матрица преобразований относительно второй оси (оси у=у') для угла (90°-ф) записывается так: