Настольная книга террориста
Шрифт:
MATERIALS EQUIPMENT ~~~~~~~~~ ~~~~~~~~~ phenol (9.5 g) 500 ml flask concentrated adjustable heat source sulfuric acid (12.5 ml) 1000 ml beaker concentrated nitric acid (38 ml) or other container distilled water suitable for boiling in
filter paper and funnel
glass stirring rod
1) Place 9.5 grams of phenol into the 500 ml flask, and carefully add 12.5 ml of concentrated sulfuric acid and stir the mixture.
2) Put 400 ml of tap water into the 1000 ml beaker or boiling container and bring the water to a gentle boil.
3) After warming the 500 ml flask under hot tap water, place it in the boiling water, and continue to stir the mixture of phenol and acid for about thirty minutes. After thirty minutes, take the flask out, and allow it to cool for about five minutes.
4) Pour out the boiling water used above, and after allowing the container to cool, use it to create an ice bath, similar to the one used in section 3.13, steps 3-4. Place the 500 ml flask with the mixed acid an phenol in the ice bath. Add 38 ml of concentrated nitric acid in small amounts, stirring the mixture constantly. A vigorous but "harmless" reaction should occur. When the mixture stops reacting vigorously, take the flask out of the ice bath.
5) Warm the ice bath container, if it is glass, and then begin boiling more tap water. Place the flask containing the mixture in the boiling water, and heat it in the boiling water for 1.5 to 2 hours.
6) Add 100 ml of cold distilled water to the solution, and chill it in an ice bath until it is cold.
7) Filter out the yellowish-white picric acid crystals by pouring the solution through the filter paper in the funnel. Collect the liquid and dispose of it in a safe place, since it is corrosive.
8) Wash out the 500 ml flask with distilled water, and put the contents of the filter paper in the flask. Add 300 ml of water, and shake vigorously.
9) Re-filter the crystals, and allow them to dry.
10) Store the crystals in a safe place in a glass container, since they will react with metal containers to produce picrates that could explode spontaneously.
3.39 AMMONIUM PICRATE
Ammonium picrate, also called Explosive D, is another safety explosive. It requires a substantial shock to cause it to detonate, slightly less than that required to detonate ammonium nitrate. It is much safer than picric acid, since it has little tendency to form hazardous unstable salts when placed in metal containers. It is simple to make from picric acid and clear household ammonia. All that need be done is put the picric acid crystals into a glass container and dissolve them in a great quantity of hot water. Add clear household ammonia in excess, and allow the excess ammonia to evaporate. The powder remaining should be ammonium picrate.
3.40 NITROGEN TRICHLORIDE
Nitrogen trichloride, also known as chloride of azode, is an oily yellow liquid. It explodes violently when it is heated above 60 degrees celsius, or when it comes in contact with an open flame or spark. It is fairly simple to produce.
1) In a beaker, dissolve about 5 teaspoons of ammonium nitrate in water. Do not put so much ammonium nitrate into the solution that some of it remains undissolved in the bottom of the beaker.
2) Collect a quantity of chlorine gas in a second beaker by mixing hydrochloric acid with potassium permanganate in a large flask with a stopper and glass pipe.
3) Place the beaker containing the chlorine gas upside down on top of the beaker containing the ammonium nitrate solution, and tape the beakers together. Gently heat the bottom beaker. When this is done, oily yellow droplets will begin to form on the surface of the solution, and sink down to the bottom. At this time, remove the heat source immediately.
Alternately, the chlorine can be bubbled through the ammonium nitrate solution, rather than collecting the gas in a beaker, but this requires timing and a stand to hold the beaker and test tube.
The chlorine gas can also be mixed with anhydrous ammonia gas, by gently heating a flask filled with clear household ammonia. Place the glass tubes from the chlorine-generating flask and the tube from the ammonia-generating flask in another flask that contains water.
4) Collect the yellow droplets with an eyedropper, and use them immediately, since nitrogen trichloride decomposes in 24 hours.
3.41 LEAD AZIDE
Lead Azide is a material that is often used as a booster charge for other explosive, but it does well enough on its own as a fairly sensitive explosive. It does not detonate too easily by percussion or impact, but it is easily detonated by heat from an igniter wire, or a blasting cap. It is simple to produce, assuming that the necessary chemicals can be procured.
By dissolving sodium azide and lead acetate in water in separate beakers, the two materials are put into an aqueous state. Mix the two beakers together, and apply a gentle heat. Add an excess of the lead acetate solution, until no reaction occurs, and the precipitate on the bottom of the beaker stops forming. Filter off the solution, and wash the precipitate in hot water. The precipitate is lead azide, and it must be stored wet for safety. If lead acetate cannot be found, simply acquire acetic acid, and put lead metal in it. Black powder bullets work well for this purpose.
3.5 OTHER "EXPLOSIVES"
The remaining section covers the other types of materials that can be used to destroy property by fire. Although none of the materials presented here are explosives, they still produce explosive-style results.
3.51 THERMIT
Thermit is a fuel-oxodizer mixture that is used to generate tremendous amounts of heat. It was not presented in section 3.23 because it does not react nearly as readily. It is a mixture of iron oxide and aluminum, both finely powdered. When it is ignited, the aluminum burns, and extracts the oxygen from the iron oxide. This is really two very exothermic reactions that produce a combined temperature of about 2200 degrees C. This is half the heat produced by an atomic weapon. It is difficult to ignite, however, but when it is ignited, it is one of the most effective firestarters around.
MATERIALS ~~~~~~~~~ powdered aluminum (10 g) powdered iron oxide (10 g)
1) There is no special procedure or equipment required to make thermit. Simply mix the two powders together, and try to make the mixture as homogenous as possible. The ratio of iron oxide to aluminum is 50% / 50% by weight, and be made in greater or lesser amounts.
2) Ignition of thermite can be accomplished by adding a small amount of potassium chlorate to the thermit, and pouring a few drops of sulfuric acid on it. This method and others will be discussed later in section 4.33. The other method of igniting thermit is with a magnesium strip. Finally, by using common sparkler-type fireworks placed in the thermit, the mixture can be ignited.